A Method for Mapping Single-cell and Spatial Transcriptomics Data with Transfer Learning
Project description
Welcome!
1. Introduction and installation
STEM is a tool for building single-cell level spatial transcriptomic landscapes using SC data with ST data. STEM extracts the spatial information from the gene expressions and eliminates the domain gap between spatial transcriptomics and single-cell RNA-seq data.
Installation
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia ## more info: https://pytorch.org/get-started/locally/
conda install -c conda-forge scanpy python-igraph leidenalg
conda install seaborn
Since STEM is a light model, you can use the code from the STEM
folder directly. But you can also install STEM from PYPI:pip install STEM
.
To verify the installation, run python test.py
Then we will demonstrate the workflow based on the mouse embryo data as part of our paper Figure 2.
%pylab inline
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import scanpy as sc
import pandas as pd
import torch
import scipy
import time
from STEM.model import *
from STEM.utils import *
2. Load and Preprocess data
First, we load the simulated ST data as ST data and the raw SeqFISH data as SC data. Then we normalized and log-scaled these data.
scdata = pd.read_csv('./data/mousedata_2020/E1z2/simu_sc_counts.csv',index_col=0)
scdata = scdata.T
stdata = pd.read_csv('data/mousedata_2020/E1z2/simu_st_counts.csv',index_col=0)
stdata = stdata.T
stgtcelltype = pd.read_csv('./data/mousedata_2020/E1z2/simu_st_celltype.csv',index_col=0)
spcoor = pd.read_csv('./data/mousedata_2020/E1z2/simu_st_metadata.csv',index_col=0)
scmetadata = pd.read_csv('./data/mousedata_2020/E1z2/metadata.csv',index_col=0)
adata = sc.AnnData(scdata,obs=scmetadata)
sc.pp.normalize_total(adata)
sc.pp.log1p(adata)
scdata = pd.DataFrame(adata.X,index=adata.obs_names,columns=adata.var_names)
stadata = sc.AnnData(stdata)
sc.pp.normalize_total(stadata)
sc.pp.log1p(stadata)
stdata = pd.DataFrame(stadata.X,index=stadata.obs_names,columns=stadata.var_names)
adata.obsm['spatial'] = scmetadata[['x_global','y_global']].values
stadata.obsm['spatial'] = spcoor
Next we calculate the ratio between the median total counts value of SC and ST data as the dropout rate.
sc.pp.calculate_qc_metrics(adata,percent_top=None, log1p=False, inplace=True)
adata.obs['n_genes_by_counts'].median()
sc.pp.calculate_qc_metrics(stadata,percent_top=None, log1p=False, inplace=True)
stadata.obs['n_genes_by_counts'].median()
dp = 1- adata.obs['n_genes_by_counts'].median()/stadata.obs['n_genes_by_counts'].median()
#0.5836734693877551
3. Train the STEM model
We first config the STEM model and then train it. Empirically we found by setting the sigma as half of the ST spot adjacent distance, STEM achieves the best performance.
class setting( object ):
pass
seed_all(2022)
opt= setting()
setattr(opt, 'device', 'cuda:0')
setattr(opt, 'outf', 'log/Mouse_E1z2')
setattr(opt, 'n_genes', 351)
setattr(opt, 'no_bn', False)
setattr(opt, 'lr', 0.002)
setattr(opt, 'sigma', 3)
setattr(opt, 'alpha', 0.8)
setattr(opt, 'verbose', True)
setattr(opt, 'mmdbatch', 1000)
setattr(opt, 'dp', dp)
testmodel = SOmodel(opt)
testmodel.togpu()
loss_curve = testmodel.train_wholedata(400,torch.tensor(scdata.values).float(),torch.tensor(stdata.values).float(),torch.tensor(spcoor.values).float())
The loss curve will be like this:
4. Get embeddings and reconstruct spatial adjacency
We first get the embeddings and build the mapping matrix We first get the embeddings and build the mapping matrix
testmodel.modeleval()
scembedding = testmodel.netE(torch.tensor(scdata.values,dtype=torch.float32).cuda())
stembedding = testmodel.netE(torch.tensor(stdata.values,dtype=torch.float32).cuda())
netst2sc = F.softmax(stembedding.mm(scembedding.t()),dim=1).detach().cpu().numpy()
netsc2st = F.softmax(scembedding.mm(stembedding.t()),dim=1).detach().cpu().numpy()
The matrix netst2sc
and netsc2st
are ST-SC and SC-ST mapping matrices, respectively. In the ST-SC mapping matrix, the probability of one spot to other cells summarizes to 1. In the SC-ST mapping matrix, the probability of one cell to other spots summarizes to 1.
Then we can get the spatial coordinate for every single cell.
adata.obsm['spatialDA'] = all_coord(pd.DataFrame(netsc2st,index=adata.obs_names,columns=stadata.obs_names),spcoor)
Compared with other methods, STEM is the only method that preserves the original topology structure of all single cells.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scSTEM-0.0.1.tar.gz
.
File metadata
- Download URL: scSTEM-0.0.1.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.62.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad40d5a05c595a89c62cce398692efca8c2a06947ff40c32d05ade6d53f7f861 |
|
MD5 | cc11c0c5c9dd0bd3fdfe7f3633255e47 |
|
BLAKE2b-256 | ada6851240c337b9a03b9a8d6bf394ece681d5179df3bdcd6a1e6a350cfb4e29 |
File details
Details for the file scSTEM-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: scSTEM-0.0.1-py3-none-any.whl
- Upload date:
- Size: 19.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.62.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 149b0d948ad869651d7b0c15550d6692d23311075d897bbf6e048209ed78a28b |
|
MD5 | 56d7a29f21910e28ed552681e8e4bc50 |
|
BLAKE2b-256 | 14e5a0becd01f748c1199ec8276944ec1c3cbaf0c2b177275055f315fb14862a |