Skip to main content

scAEspy: a tool for autoencoder-based analysis of single-cell RNA sequencing data

Project description

scAEspy is a user-friendly and standalone tool that embodies six of the most advanced autoencoders (AEs), easily accessible by setting up only two user-defined parameters (i.e., alpha and lambda), and different loss functions, which are fundamental to deal with the different RNA sequencing platforms.

Specifically, scAEspy contains the following most advanced AEs: Variational AE, Gaussian-mixture VAE (GMVAE), Maximum Mean Discrepancy (MMD) AE, MMDVAE (a combination of MMDAE and VAE), and two novel Gaussian-mixture AEs that we developed, called GMMMD and GMMMDVAE. GMMMD is a modification of the MMDVAE where more than one Gaussian distribution is used to model different modes and only the MMD loss function is used as a divergence function. GMMMDVAE is a combination of MMDVAE and GMVAE where both the MMD function and the Kullback–Leibler (KL) divergence function are used.

scAEspy gives easy access to the latent space generated by the selected AE, which can be utilised to perform downstream analysis or to generate synthetic cells.

For further information, please visit https://gitlab.com/cvejic-group/scaespy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

scaespy-1.1.0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file scaespy-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: scaespy-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 26.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/54.1.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.5

File hashes

Hashes for scaespy-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3fd027e78f0f0cf7dd4b37df7167e4cc568ad80b29104471a0586f0a7cfd5017
MD5 5ee67abec7ca9d98430a840c2bb1a553
BLAKE2b-256 01feca7a33dd9350cb7a4c6dfcfad82172c371ecb2f7a467cee46af3d194a968

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page