Skip to main content

Single-cell integrative Analysis via Latent feature Extraction

Project description

# SCALE v2: Single-cell integrative Analysis via latent Feature Extraction

## Installation #### install from PyPI

pip install scale-v2

#### install from GitHub

git clone git://github.com/jsxlei/scale_v2.git cd scale_v2 python setup.py install

SCALE v2 is implemented in [Pytorch](https://pytorch.org/) framework. Running SCALE v2 on CUDA is recommended if available. Installation only requires a few minutes.

## Quick Start

### 1. Command line

SCALE.py –data_list data1 data2 –batch_categories batch1 batch2

data_list: data path of each batch of single-cell dataset batch_categories: name of each batch

#### Output Output will be saved in the output folder including: * checkpoint: saved model to reproduce results cooperated with option –checkpoint or -c * adata.h5ad: preprocessed data and results including, latent, clustering and imputation * umap.png: UMAP visualization of latent representations of cells * log.txt: log file of training process

#### Useful options * output folder for saveing results: [-o] or [–outdir] * filter rare genes, default 3: [–min_cell] * filter low quality cells, default 600: [–min_gene] * select the number of highly variable genes, keep all genes with -1, default 2000: [–n_top_genes]

#### Help Look for more usage of SCALE v2

SCALE.py –help

### 2. API function

from scale import SCALE adata = SCALE(data_list, batch_categories)

Function of parameters are similar to command line options. Output is a Anndata object for further analysis with scanpy.

#### Tutorial

See document

## Previous version [SCALE](https://github.com/jsxlei/SCALE)

SCALE is still available in SCALE v2

### Command line

SCALE.py –d data –version 1

### API

from scale.extensions import SCALE_v1 SCALE_v1(data)

All the usage is the same with previous SCALE version 1.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scale_v2-2.0.3.dev0.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

scale_v2-2.0.3.dev0-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file scale_v2-2.0.3.dev0.tar.gz.

File metadata

  • Download URL: scale_v2-2.0.3.dev0.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for scale_v2-2.0.3.dev0.tar.gz
Algorithm Hash digest
SHA256 7af19f1d4673c9054244619fc3885c7dc92a56484bd8736ee701eb28e3d754f5
MD5 53a612d76798a5bcee65476a600d3445
BLAKE2b-256 3297cba4d2379eccb3076eb8e0e2089499e4817a8244f91fea98f0747ffd94e9

See more details on using hashes here.

File details

Details for the file scale_v2-2.0.3.dev0-py3-none-any.whl.

File metadata

  • Download URL: scale_v2-2.0.3.dev0-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for scale_v2-2.0.3.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 81df2a20e0bebfa700221593f0ddaf99412bc6048f7fb73289e24f447f99999e
MD5 245e889a0e468e7fc84e9f0289fb6e1e
BLAKE2b-256 4fdf7e2b2cdd437874fa406bf8b1a3134ad7e7579a83e253128fecaddf169bd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page