Skip to main content

Python SCALE Codec Library

Project description

Python SCALE Codec

Build Status Latest Version Supported Python versions License

Python SCALE Codec Library

Description

Most of the data that the Substrate RPCs output is encoded with the SCALE Codec. This codec is used by the Substrate nodes' internal runtime. In order to get to meaningful data this data will need to be decoded. The Python SCALE Codec Library will specialize in this task.

Documentation

https://polkascan.github.io/py-scale-codec/

Installation

pip install scalecodec

Examples (MetadataV14 runtimes and higher)

Encode a Call

runtime_config = RuntimeConfigurationObject()
# This types are all hardcoded types needed to decode metadata types
runtime_config.update_type_registry(load_type_registry_preset(name="metadata_types"))

# Decode retrieved metadata from the RPC
metadata = runtime_config.create_scale_object(
    'MetadataVersioned', data=ScaleBytes(response.get('result'))
)
metadata.decode()

# Add the embedded type registry to the runtime config
runtime_config.add_portable_registry(metadata)

call = runtime_config.create_scale_object(
    "Call", metadata=metadata
)
call.encode({
    "call_module": "Balances",
    "call_function": "transfer",
    "call_args": {"dest": "5GNJqTPyNqANBkUVMN1LPPrxXnFouWXoe2wNSmmEoLctxiZY", "value": 3},
})

Decode the result of a state_getStorageAt RPC call

event_data = "0x2000000000000000b0338609000000000200000001000000000080b2e60e0000000002000000020000000003be1957935299d0be2f35b8856751feab95fc7089239366b52b72ca98249b94300000020000000500be1957935299d0be2f35b8856751feab95fc7089239366b52b72ca98249b943000264d2823000000000000000000000000000200000005027a9650a6bd43f1e0b4546affb88f8c14213e1fb60512692c2b39fbfcfc56b703be1957935299d0be2f35b8856751feab95fc7089239366b52b72ca98249b943000264d2823000000000000000000000000000200000013060c4c700700000000000000000000000000000200000005047b8441d5110c178c29be709793a41d73ae8b3119a971b18fbd20945ea5d622f00313dc01000000000000000000000000000002000000000010016b0b00000000000000"

system_pallet = metadata.get_metadata_pallet("System")
event_storage_function = system_pallet.get_storage_function("Events")

event = runtime_config.create_scale_object(
    event_storage_function.get_value_type_string(), metadata=metadata
)
print(event.decode(ScaleBytes(event_data)))

Retrieve type decomposition information of a RegistryType:

pallet = metadata.get_metadata_pallet("System")
storage_function = pallet.get_storage_function("BlockHash")

param_type_string = storage_function.get_params_type_string()
param_type_obj = runtime_config.create_scale_object(param_type_string[0])

type_info = param_type_obj.scale_info_type.retrieve_type_decomposition()

print(type_info) 
# {'primitive': 'u32'}

Examples (prior to MetadataV14)

Decode a SCALE-encoded Compact<Balance>

RuntimeConfiguration().update_type_registry(load_type_registry_preset("default"))
RuntimeConfiguration().update_type_registry(load_type_registry_preset("kusama"))
obj = RuntimeConfiguration().create_scale_object('Compact<Balance>', data=ScaleBytes("0x130080cd103d71bc22"))
obj.decode()
print(obj.value)

Encode to Compact<Balance>

RuntimeConfiguration().update_type_registry(load_type_registry_preset("default"))
obj = RuntimeConfiguration().create_scale_object('Compact<Balance>')
scale_data = obj.encode(2503000000000000000)
print(scale_data)

Encode to Vec<Bytes>

RuntimeConfiguration().update_type_registry(load_type_registry_preset("default"))
value = ['test', 'vec']
obj = RuntimeConfiguration().create_scale_object('Vec<Bytes>')
scale_data = obj.encode(value)
print(scale_data)

Add custom types to type registry

RuntimeConfiguration().update_type_registry(load_type_registry_preset("default"))

custom_types = {
    "types": {
        "MyCustomType": "u32",
        "CustomNextAuthority": {
          "type": "struct",
          "type_mapping": [
             ["AuthorityId", "AuthorityId"],
             ["weight", "AuthorityWeight"]
          ]
        }
    }   
}

RuntimeConfiguration().update_type_registry(custom_types)

Or from a custom JSON file

RuntimeConfiguration().update_type_registry(load_type_registry_preset("default"))
RuntimeConfiguration().update_type_registry(load_type_registry_file("/path/to/type_registry.json"))

Multiple runtime configurations

By default a singleton is used to maintain the configuration, for multiple instances:

# Kusama runtime config
runtime_config_kusama = RuntimeConfigurationObject()
runtime_config_kusama.update_type_registry(load_type_registry_preset("default"))
runtime_config_kusama.update_type_registry(load_type_registry_preset("kusama"))


# Polkadot runtime config
runtime_config_polkadot = RuntimeConfigurationObject()
runtime_config_polkadot.update_type_registry(load_type_registry_preset("default"))
runtime_config_polkadot.update_type_registry(load_type_registry_preset("polkadot"))

# Decode extrinsic using Kusama runtime configuration
extrinsic = runtime_config_kusama.create_scale_object(
    type_string='Extrinsic', 
    metadata=metadata_decoder
)
extrinsic.decode(ScaleBytes(extrinsic_data))

License

https://github.com/polkascan/py-scale-codec/blob/master/LICENSE

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scalecodec-1.0.35.tar.gz (126.2 kB view hashes)

Uploaded source

Built Distribution

scalecodec-1.0.35-py3-none-any.whl (75.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page