Skip to main content

Scale Distribution Framework

Project description

Scaled

This project is aiming the target that provides simple and efficient and reliable way for distributing computing framework, centralized scheduler and stable protocol when client and worker talking to scheduler

Introduction

The goal for this project should be as simple as possible

  • It built on top of zmq
  • it has ready python version of Client, Scheduler, Worker
  • I will provide golang or Rust version of Scheduler, the goal for the Scheduler should be completely computer language agnostic, which means they follow the same protocol
  • Scheduler might support function based computing tree in the future

Installation

pip install scaled

if you want to use uvloop, please do: pip install uvloop, default we are using python builtin uvloop

How to use it

Start local scheduler and cluster at the same time in the code

import random

from scaled.client import Client
from scaled.cluster.combo import SchedulerClusterCombo


def calculate(sec: int):
    return sec * 1


def main():
    address = "tcp://127.0.0.1:2345"

    cluster = SchedulerClusterCombo(address=address, n_workers=10, event_loop="uvloop")
    client = Client(address=address)

    tasks = [random.randint(0, 100) for _ in range(100000)]
    futures = [client.submit(calculate, i) for i in tasks]

    results = [future.result() for future in futures]

    assert results == tasks

    client.disconnect()
    cluster.shutdown()


if __name__ == "__main__":
    main()

Start scheduler and cluster independently

use scaled_scheduler to start scheduler, for example:

$ scaled_scheduler tcp://0.0.0.0:8516
[INFO]2023-03-19 12:16:10-0400: logging to ('/dev/stdout',)
[INFO]2023-03-19 12:16:10-0400: use event loop: 2
[INFO]2023-03-19 12:16:10-0400: Scheduler: monitor address is ipc:///tmp/0.0.0.0_8516_monitor
[INFO]2023-03-19 12:16:10-0400: AsyncBinder: started
[INFO]2023-03-19 12:16:10-0400: VanillaTaskManager: started
[INFO]2023-03-19 12:16:10-0400: VanillaFunctionManager: started
[INFO]2023-03-19 12:16:10-0400: VanillaWorkerManager: started
[INFO]2023-03-19 12:16:10-0400: StatusReporter: started

use scaled_cluster to start 10 workers:

$ scaled_worker -n 10 tcp://127.0.0.1:8516
[INFO]2023-03-19 12:19:19-0400: logging to ('/dev/stdout',)
[INFO]2023-03-19 12:19:19-0400: ClusterProcess: starting 23 workers, heartbeat_interval_seconds=2, function_retention_seconds=3600
[INFO]2023-03-19 12:19:19-0400: Worker[0] started
[INFO]2023-03-19 12:19:19-0400: Worker[1] started
[INFO]2023-03-19 12:19:19-0400: Worker[2] started
[INFO]2023-03-19 12:19:19-0400: Worker[3] started
[INFO]2023-03-19 12:19:19-0400: Worker[4] started
[INFO]2023-03-19 12:19:19-0400: Worker[5] started
[INFO]2023-03-19 12:19:19-0400: Worker[6] started
[INFO]2023-03-19 12:19:19-0400: Worker[7] started
[INFO]2023-03-19 12:19:19-0400: Worker[8] started
[INFO]2023-03-19 12:19:19-0400: Worker[9] started

for detail options of above 2 program, please use argument -h to check out all available options

Then you can write simply write client code as:

from scaled.client import Client


def foobar(foo: int):
    return foo


client = Client(address="tcp://127.0.0.1:2345")
future = client.submit(foobar, 1)

print(future.result())

Scaled also supports submit graph task, for example:

from scaled.client import Client


def inc(i):
    return i + 1

def add(a, b):
    return a + b

def minus(a, b):
    return a - b

graph = {
    "a": 2,
    "b": 2, 
    "c": (inc, "a"),  # c = a + 1 = 2 + 1 = 3
    "d": (add, "a", "b"),  # d = a + b = 2 + 2 = 4
    "e": (minus, "d", "c")  # e = d - c = 4 - 3 = 1
}

client = Client(address="tcp://127.0.0.1:2345")
futures = client.submit_graph(graph, keys=["e"])

print(futures[0].result())

Scaled Top

You can use scaled_top to connect to scheduler monitor address to get some insides of the scaled_top

$ scaled_top ipc:///tmp/0.0.0.0_8516_monitor

Which will something similar to top command, but it's for getting status of the scaled system:

scheduler          | task_manager         |   scheduler_sent         | scheduler_received
      cpu     0.0% |   unassigned       0 | FunctionResponse      24 |          Heartbeat 183,109
      rss 37.1 MiB |      running       0 |         TaskEcho 200,000 |    FunctionRequest      24
                   |      success 200,000 |             Task 200,000 |               Task 200,000
                   |       failed       0 |       TaskResult 200,000 |         TaskResult 200,000
                   |     canceled       0 |   BalanceRequest       4 |    BalanceResponse       4
--------------------------------------------------------------------------------------------------
Shortcuts: worker[n] cpu[c] rss[m] free[f] working[w] queued[q]

Total 10 worker(s)
                 worker agt_cpu agt_rss [cpu]   rss free sent queued | function_id_to_tasks
W|Linux|15940|3c9409c0+    0.0%   32.7m  0.0% 28.4m 1000    0      0 |
W|Linux|15946|d6450641+    0.0%   30.7m  0.0% 28.2m 1000    0      0 |
W|Linux|15942|3ed56e89+    0.0%   34.8m  0.0% 30.4m 1000    0      0 |
W|Linux|15944|6e7d5b99+    0.0%   30.8m  0.0% 28.2m 1000    0      0 |
W|Linux|15945|33106447+    0.0%   31.1m  0.0% 28.1m 1000    0      0 |
W|Linux|15937|b031ce9a+    0.0%   31.0m  0.0% 30.3m 1000    0      0 |
W|Linux|15941|c4dcc2f3+    0.0%   30.5m  0.0% 28.2m 1000    0      0 |
W|Linux|15939|e1ab4340+    0.0%   31.0m  0.0% 28.1m 1000    0      0 |
W|Linux|15938|ed582770+    0.0%   31.1m  0.0% 28.1m 1000    0      0 |
W|Linux|15943|a7fe8b5e+    0.0%   30.7m  0.0% 28.3m 1000    0      0 |
  • scheduler section is showing how much resources scheduler used
  • task_manager section shows count for each task status
  • scheduler_sent section shows count for each type of messages scheduler sent
  • scheduler_received section shows count for each type of messages scheduler received
  • function_id_to_tasks section shows task count for each function used
  • worker section shows worker details, you can use shortcuts to sort by columns, the char * on column header show which column is sorted right now
    • agt_cpu/agt_rss means cpu/memory usage of worker agent
    • cpu/rss means cpu/memory usage of worker
    • free means number of free task slots for this worker
    • sent means how many tasks scheduler sent to the worker
    • queued means how many tasks worker received and queued

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaled-0.56.tar.gz (40.1 kB view details)

Uploaded Source

Built Distribution

scaled-0.56-py3-none-any.whl (52.7 kB view details)

Uploaded Python 3

File details

Details for the file scaled-0.56.tar.gz.

File metadata

  • Download URL: scaled-0.56.tar.gz
  • Upload date:
  • Size: 40.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for scaled-0.56.tar.gz
Algorithm Hash digest
SHA256 e61527974ce34640e6be4c9e079cd190823173eddd37d4c09bf8b89ccd4d49f9
MD5 e63e7d38050e20e1e9bebe1959696187
BLAKE2b-256 efe83053c15dad0a1b5fe0bf0b25b9a86e712cafd77b7e5913e2447dd5d9d691

See more details on using hashes here.

File details

Details for the file scaled-0.56-py3-none-any.whl.

File metadata

  • Download URL: scaled-0.56-py3-none-any.whl
  • Upload date:
  • Size: 52.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for scaled-0.56-py3-none-any.whl
Algorithm Hash digest
SHA256 8aa9251e644879ed916acbf79e324b8cb485286b44d10f8318bd0e1b006d1e31
MD5 c9e6d8f47c31fc1f10fe498521b5b651
BLAKE2b-256 ab4af32a48bb40fa0c2c0785326d48c7057619f4f44e30505cb651733caffece

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page