Skip to main content

Scaling Value Iteration Networks

Project description

Scaling Value Iteration Networks (wip)

Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group

Usage

import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)

Citations

@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaling_vin_pytorch-0.0.10.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

scaling_vin_pytorch-0.0.10-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file scaling_vin_pytorch-0.0.10.tar.gz.

File metadata

  • Download URL: scaling_vin_pytorch-0.0.10.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for scaling_vin_pytorch-0.0.10.tar.gz
Algorithm Hash digest
SHA256 01bdd735cfd7b3b0598a4c4cf9581b8e9e3dee4f3c62d5c4cb5ce2c2dd3d7465
MD5 dd1b214118680436085bb7cf7f9ebf6f
BLAKE2b-256 968dec885cc4797c5f13cc230ba8fe89eab683fab48338d9a8e88a4cc6afb562

See more details on using hashes here.

File details

Details for the file scaling_vin_pytorch-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for scaling_vin_pytorch-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 2e734f36620f264e771f16c547d2229d986e3f128cdfececa5494716dcd1cb71
MD5 0917b3f14fdf17e6824e7f69738f0857
BLAKE2b-256 6d65f56dfe6c99d673f2fcd05ede821f2c96ab4cf7db083cf7036cca00a9b9b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page