Scaling Value Iteration Networks
Project description
Scaling Value Iteration Networks
Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group
Usage
import torch
from scaling_vin_pytorch import ScalableVIN
scalable_vin = ScalableVIN(
state_dim = 3,
reward_dim = 2,
num_actions = 10
)
state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)
agent_positions = torch.randint(0, 32, (2, 2))
target_actions = torch.randint(0, 10, (2,))
loss = scalable_vin(
state,
reward,
agent_positions,
target_actions
)
loss.backward()
action_logits = scalable_vin(
state,
reward,
agent_positions
)
Citations
@article{Wang2024ScalingVI,
title = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
author = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
journal = {ArXiv},
year = {2024},
volume = {abs/2406.08404},
url = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
title = {Soft Value Iteration Networks for Planetary Rover Path Planning},
author = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
year = {2018},
url = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
title = {Value Iteration Networks},
author = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
booktitle = {Neural Information Processing Systems},
year = {2016},
url = {https://api.semanticscholar.org/CorpusID:11374605}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scaling_vin_pytorch-0.0.12.tar.gz
.
File metadata
- Download URL: scaling_vin_pytorch-0.0.12.tar.gz
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81d587bbd8985071b08a4dcfc26662ba1bba4c8f62819af35b5578c1adb0608b |
|
MD5 | dc7138ef7e5bbcfcdd32024215f9fe7a |
|
BLAKE2b-256 | 165028e91642d15d7e84d41c6ddde47315628c9c61844b20503b657cd6d4c791 |
File details
Details for the file scaling_vin_pytorch-0.0.12-py3-none-any.whl
.
File metadata
- Download URL: scaling_vin_pytorch-0.0.12-py3-none-any.whl
- Upload date:
- Size: 12.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d4b12aab9f04e9df292f9ffacce75148365691c3d4dec6968a11943932dc756 |
|
MD5 | 91d45510277327f4f084899160fdfee5 |
|
BLAKE2b-256 | 35deb0e3b7c324cd09ab0e1ce38047fb26d8a0ad8d9c7591a4d66cf0b280de1e |