Skip to main content

Scaling Value Iteration Networks

Project description

Scaling Value Iteration Networks (wip)

Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group

Usage

import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)

Citations

@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaling_vin_pytorch-0.0.3.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

scaling_vin_pytorch-0.0.3-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file scaling_vin_pytorch-0.0.3.tar.gz.

File metadata

  • Download URL: scaling_vin_pytorch-0.0.3.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for scaling_vin_pytorch-0.0.3.tar.gz
Algorithm Hash digest
SHA256 59b222634fce19bf5eedb8b5af1160de47f2923b37862d48f5a068fd118ffb07
MD5 041f2d81eebf76d0aeafcc409707b230
BLAKE2b-256 6d8763c66ccb7a87fa3a879387d74a2ab56e6f4017b824e866c12f2c8b46ba9e

See more details on using hashes here.

File details

Details for the file scaling_vin_pytorch-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for scaling_vin_pytorch-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2b903367b8ba75d8e7bd210c3ca303ca2321685f65dc2960f4ca285d09899e86
MD5 a8bfe56f98c961d313dcdaa34f3c7b8e
BLAKE2b-256 767faeb4e60e481a2f41ba05ce7ad5eada960cbbe08dbfe5b12866439f7a8cb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page