Skip to main content

Scaling Value Iteration Networks

Project description

Scaling Value Iteration Networks (wip)

Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group

Usage

import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)

Citations

@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaling_vin_pytorch-0.0.5.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

scaling_vin_pytorch-0.0.5-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file scaling_vin_pytorch-0.0.5.tar.gz.

File metadata

  • Download URL: scaling_vin_pytorch-0.0.5.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for scaling_vin_pytorch-0.0.5.tar.gz
Algorithm Hash digest
SHA256 f034157f36e05689df2eb995b0345c4a048faf624e4a8bcc2c09cb202997f9ca
MD5 f8d2ac32e547e8321e2c7fab9783f1cc
BLAKE2b-256 adff76d3c80d0b226d0ecc2ca1a4392b58b444b63e9b22784e083cfbf91f92fc

See more details on using hashes here.

File details

Details for the file scaling_vin_pytorch-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for scaling_vin_pytorch-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 6625b31c30f6d5dfbd81c53374d6f474ca34e69321d93ce172f3f8f98117b0f7
MD5 0d6228028dad93b0122d6ca4b57959c0
BLAKE2b-256 1bfecc1c096d62808f984a202c0b67399baff16acca186221f9dd63b35ec2a6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page