Skip to main content

Scaling Value Iteration Networks

Project description

Scaling Value Iteration Networks (wip)

Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group

Usage

import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)

Citations

@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaling_vin_pytorch-0.0.6.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

scaling_vin_pytorch-0.0.6-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file scaling_vin_pytorch-0.0.6.tar.gz.

File metadata

  • Download URL: scaling_vin_pytorch-0.0.6.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for scaling_vin_pytorch-0.0.6.tar.gz
Algorithm Hash digest
SHA256 9212e1b601a466952bd857ffb4f7c974ebef5422c2528879f924d302eed73d2a
MD5 372fe601d3d9b3c607c24680faa1d13a
BLAKE2b-256 5475085f30b6ba5eb2d12b0353f7909c5efa1a7943dc039763776a6f10e89514

See more details on using hashes here.

File details

Details for the file scaling_vin_pytorch-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for scaling_vin_pytorch-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 66439cf5e0dc117a3cc40356eecd631f4a6e8e9b70fd15b93bdae8b5ac150249
MD5 1002515b9a940dcc6a19cd7e133b9f32
BLAKE2b-256 264d1e70b7a6589d1110f2fd49ae53941ef8ec8e8d1985555f1939a349f9db0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page