Skip to main content

Scaling Value Iteration Networks

Project description

Scaling Value Iteration Networks (wip)

Exploration into the Scaling Value Iteration Networks paper, from Schmidhuber's group

Usage

import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)

Citations

@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scaling_vin_pytorch-0.0.8.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

scaling_vin_pytorch-0.0.8-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file scaling_vin_pytorch-0.0.8.tar.gz.

File metadata

  • Download URL: scaling_vin_pytorch-0.0.8.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for scaling_vin_pytorch-0.0.8.tar.gz
Algorithm Hash digest
SHA256 26ace8761bdb0a9dc71b9f2fb12015ef365fe698895b29eb6c65cbd64cbca35a
MD5 4a4ba6f8c895f9007f4849aaf968a582
BLAKE2b-256 b0b003faa718f604009024a0af209a4392b63fec2229863bd1003bb408fb6579

See more details on using hashes here.

File details

Details for the file scaling_vin_pytorch-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for scaling_vin_pytorch-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 04a09c64a2b3c07d52a24609bba135323a2d2e560688765e369401caa6923e69
MD5 20cd33e05ffe758eaa376f2c88609730
BLAKE2b-256 34616f343cf9ca66c124830c5d8dee10dafea70cb29e7bd8a81758efcf6f4fc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page