Exapliner of scANVI using SHAP
Project description
scanvi-explainer
Interpretability extension for scANVI using SHAP package.
Please see our example notebook on how to run scANVI Explainer.
Installation
$ pip install scanvi-explainer
Install from source
$ git clone https://github.com/brickmanlab/scanvi-explainer.git && cd scanvi-explainer
$ uv sync
Build documentation
$ sphinx-build -M html docs docs/_build
Citation
Please consider citing scANVI Explainer if you use in your research.
Deep Learning Based Models for Preimplantation Mouse and Human Development
Martin Proks, Nazmus Salehin, Joshua M. Brickman
bioRxiv 2024.02.16.580649; doi: 10.1101/2024.02.16.580649
@article{Proks2024.02.16.580649,
author = {Proks, Martin and Salehin, Nazmus and Brickman, Joshua M.},
title = {Deep Learning Based Models for Preimplantation Mouse and Human Development},
elocation-id = {2024.02.16.580649},
year = {2024},
doi = {10.1101/2024.02.16.580649},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2024/02/16/2024.02.16.580649},
eprint = {https://www.biorxiv.org/content/early/2024/02/16/2024.02.16.580649.full.pdf},
journal = {bioRxiv}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scanvi_explainer-0.3.1.tar.gz
.
File metadata
- Download URL: scanvi_explainer-0.3.1.tar.gz
- Upload date:
- Size: 1.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44763495240eac29f46342d76d321bcd68bb139dd22989abb427348772d99235 |
|
MD5 | 6c18cae1a6dd34b7a088b989db6e0f5d |
|
BLAKE2b-256 | 5bfb65500bfef77dc55a4c274395182e57050beb0c4c6f5b0b380d5c79e7699f |
File details
Details for the file scanvi_explainer-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: scanvi_explainer-0.3.1-py3-none-any.whl
- Upload date:
- Size: 13.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab1b0e5ae76246a4f9306ff9aea039a57b2f5ac711acd14af65bb0f832f0d070 |
|
MD5 | dc626fade84186b38dfcee62662dd2a3 |
|
BLAKE2b-256 | 1fbbd6967f243dfb3fa516cd549f658840e807446b05f51f27288424549db019 |