Skip to main content

Easy and fast way of creating scatter plots.

Project description

scatterd

Python PyPI Version License Downloads Donate

  • Easy and fast manner of creating scatter plots.

Contents

Installation

  • Install scatterd from PyPI (recommended). scatterd is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • It is distributed under the MIT license.

Requirements

pip install numpy matplotlib colourmap

Quick Start

pip install scatterd
  • Alternatively, install scatterd from the GitHub source:
git clone https://github.com/erdogant/scatterd.git
cd scatterd
python setup.py install

Import scatterd package

from scatterd import scatterd

Example:

# Import some example data
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
y = iris.target

# Make simple scatterplot
scatterd(X[:,0], X[:,1])
# Color based on labels
scatterd(X[:,0], X[:,1], label=y, s=100)
# Set labels
scatterd(X[:,0], X[:,1], label=y, s=100, norm=True, cmap='Set2', xlabel='xlabel', ylabel='ylabel', title='Title')
# Change sizes
s=np.random.randint(10,200,len(y))
scatterd(X[:,0], X[:,1], label=y, s=s, cmap='Set2', xlabel='xlabel', ylabel='ylabel', title='Title', fontsize=25, figsize=(15,10))
# Change figure size
scatterd(X[:,0], X[:,1], figsize=(25,15))

Citation

Please cite scatterd in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{erdogant2019scatterd,
  title={scatterd},
  author={Erdogan Taskesen},
  year={2019},
  howpublished={\url{https://github.com/erdogant/scatterd}},
}

Maintainers

Contribute

  • Contributions are welcome.

Licence

See LICENSE for details.

Donation

  • This package is created and maintained in my free time. If this package is usefull, you can show your gratitude :) Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scatterd-0.1.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

scatterd-0.1.1-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file scatterd-0.1.1.tar.gz.

File metadata

  • Download URL: scatterd-0.1.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.10

File hashes

Hashes for scatterd-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ca3168b924c040b5440b78a423445c63a3adfd8801fe381406a2cdcabca2843f
MD5 3e138f346ccbddf8281351ecefb1036a
BLAKE2b-256 20ce9d26b3ab3bda53ffddb9fdd724f781f20ec89d213cfd6b540061232e690d

See more details on using hashes here.

File details

Details for the file scatterd-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: scatterd-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.10

File hashes

Hashes for scatterd-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 90beb3cb366e378479a80fbd81b3f85e5d10bec5468b247b999d29a803d1d124
MD5 6677a55e637904a46e489879ae7fc927
BLAKE2b-256 548efb3c63288ef3e069dcd5916c9545b6ad1e5304bc1c0b9498835d8ec3de80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page