scDiffEq: modeling single-cell dynamics using neural differential equations.
Project description
An analysis framework for modeling dynamical single-cell data with neural differential equations, most notably stochastic differential equations allow us to build generative models of single-cell dynamics.
Install the development package:
git clone https://github.com/mvinyard/sc-neural-diffeqs.git; cd ./sc-neural-diffeqs;
pip install -e .
Main API
import scdiffeq as sdq
from neural_diffeqs import NeuralSDE
model = sdq.models.scDiffEq(
adata, func=NeuralSDE(state_size=50, mu_hidden=[400, 400], sigma_hidden=[400, 400])
)
model.fit()
Built on:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scdiffeq-0.0.53.tar.gz
(85.0 kB
view details)
Built Distribution
scdiffeq-0.0.53-py3-none-any.whl
(132.9 kB
view details)
File details
Details for the file scdiffeq-0.0.53.tar.gz
.
File metadata
- Download URL: scdiffeq-0.0.53.tar.gz
- Upload date:
- Size: 85.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38954f5bc70d26017aefb03c482844d106184bbb7873118218f295a14c0e454e |
|
MD5 | 4efb0dd39e95c4ea6e679da5b2239372 |
|
BLAKE2b-256 | a75998e22f459d3d914bb52bf34913a1a49be954fa60da82b8821a5ec28a348a |
File details
Details for the file scdiffeq-0.0.53-py3-none-any.whl
.
File metadata
- Download URL: scdiffeq-0.0.53-py3-none-any.whl
- Upload date:
- Size: 132.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b27d787514a73a7ef6ee628a404913f419efaaf6555a2341ca2e0619139dc3b |
|
MD5 | 861078c8a3b78b524313219cc70bb687 |
|
BLAKE2b-256 | 71cf08835650160f033835b173c536e2f463c5c0972035d75b3290ed3dba0c06 |