scDiffEq: modeling single-cell dynamics using neural differential equations.
Project description
An analysis framework for modeling dynamical single-cell data with neural differential equations, most notably stochastic differential equations allow us to build generative models of single-cell dynamics.
Install the development package:
git clone https://github.com/mvinyard/sc-neural-diffeqs.git; cd ./sc-neural-diffeqs;
pip install -e .
Main API
import scdiffeq as sdq
from neural_diffeqs import NeuralSDE
model = sdq.models.scDiffEq(
adata, func=NeuralSDE(state_size=50, mu_hidden=[400, 400], sigma_hidden=[400, 400])
)
model.fit()
Built on:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scdiffeq-0.0.54.tar.gz
(100.5 kB
view details)
Built Distribution
scdiffeq-0.0.54-py3-none-any.whl
(162.1 kB
view details)
File details
Details for the file scdiffeq-0.0.54.tar.gz
.
File metadata
- Download URL: scdiffeq-0.0.54.tar.gz
- Upload date:
- Size: 100.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fab118f4ee1236842efc4e8493dd5d703e196111a7d21cd8ec085916b4f19e7 |
|
MD5 | 21bf16f49d46d396de0031c0b7b83423 |
|
BLAKE2b-256 | 35df2cd6a22838b62e6a7dc6163dc0fcabd180fdb6b90eb5b7c4530698fc6e0d |
File details
Details for the file scdiffeq-0.0.54-py3-none-any.whl
.
File metadata
- Download URL: scdiffeq-0.0.54-py3-none-any.whl
- Upload date:
- Size: 162.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1e0347558afe78fa1058d96a950a142e5e9344fc69f467fdb6044b4917bee42 |
|
MD5 | c21ade987ba5a21cfdfa003e70cf05c0 |
|
BLAKE2b-256 | b72647004574158520df2cedd6e5a11c97646613c3820e62242a3ca475ba0ac6 |