Skip to main content

Wrappers for automating single cell workflows in python

Project description

ScEasyMode: Wrappers for automating single cell workflows in Python

Features

  • Multiseq correction in python using a within-barcode zscore correction
  • Plotting for stacked barplots in your dataset
  • Mouse cell filtering/separation from mixed dataset
  • Scanpy wrapper that simplifies the workflow

Installation

Install using Pip

pip3 install scEasyMode

Install using a Conda Environment

  • You may also use Conda to start an environment with ScEasyMode installed inside it. You can install conda from here.
  • Firstly, clone the repository and create the environment as shown below. Then, activate the environment.
git clone https://github.com/johnnyUCSF/scEasyMode
cd scEasyMode
conda env create -f environment.yml
conda activate sceasymode_env
  • Now start your Jupyter Notebook or Python shell inside the conda environment

Usage

Load the modules

from scEasyMode import mousefilter
from scEasyMode import clusterplot
from scEasyMode import pymulti
from scEasyMode import sceasy

Demultiplex your samples

import pandas as pd
from scEasyMode import pymulti

# Define parameters

len_10x=16 # Number of bases in cell barcodes
len_umi=12 # Length of UMI
len_multi=15, # Number of bases in the HTO barcodes / HashTag O

fastq_r1 = 'path/to/file'
fastq_r2 = 'path/to/file'
sample_name = 'test_demultiplexing'

cell_BC_file = 'path/to/cell_barcodes' # Counts Matrix after alignment and pre-processing
cell_bcs = pd.read_csv(cell_BC_file, sep='\t', header=None)[0].tolist()

multi_BC_file = 'path/to/barcodes' # Barcodes TSV file from 10x or Illumina
bcsmulti = pd.read_csv(multi_BC_file,sep=',',index_col=1,header=None)
bcsmulti.columns = ['multi']
bcsmulti = bcsmulti['multi'].tolist()

pymulti.pymulti(fastq_r1, fastq_r2, bcsmulti=bcsmulti, bcs10x=cell_bcs,
                len_10x=len_10x, len_multi=len_multi, len_umi=len_umi, split=True,
                hamming=True, median_only=True, sampname= sample_name,  filter_unmapped_reads=True)

# This function will output multiple graphs
# It will also store a matrix of the assigned barcodes in the 'pymulti' directory inside the working directory.
# Note that some reads are unmapped. If you want to retain them, you can do so by specifying filter_unmapped_reads=False.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scEasyMode-1.0.1.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

scEasyMode-1.0.1-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file scEasyMode-1.0.1.tar.gz.

File metadata

  • Download URL: scEasyMode-1.0.1.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for scEasyMode-1.0.1.tar.gz
Algorithm Hash digest
SHA256 d423dd5f87136b680e40faa5d074832f209017b5bef6ed1e40210536bf0eb348
MD5 2be6dad17747897827eed91a1837ea20
BLAKE2b-256 987732e96cf1e610ae2ef2668bb5d3f19eb5b4ccd40a0e50b5f94d8f2edd7539

See more details on using hashes here.

File details

Details for the file scEasyMode-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: scEasyMode-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 19.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for scEasyMode-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d5e2d39948f95b2eaf13a81562887735a7c1d95b1f36ad1bfa388a68f85c32cc
MD5 e1cc7bd635c6d84413c6451bba72f7fa
BLAKE2b-256 494a7afed2b587912cec80ba0cbed3de4ee6ffcd9822e458d7eda072c827e2b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page