Skip to main content

Single-cell explorative data analysis for RNA-Seq

Project description

# Scedar

[![Build Status](](
[![License: MIT](](
[![PyPI version](](
[![Python env](](

`Scedar` (Single-cell exploratory data analysis for RNA-Seq) is a reliable and easy-to-use Python package for efficient *quality control*, *visualization* and *clustering* of large-scale single cell RNA-seq (scRNA-seq) datasets.

## Install

Use PyPI:

`pip install scedar`

## Demo


Workflow of using `scedar` to analyze an scRNA-seq dataset with 3005 mouse brain cells and 19,972 genes generated using the STRT-Seq UMI protocol by Zeisel et al. (2015). Procedures and parameters that are not directly related to data analysis are omitted. The full version of the demo is available at [docs/notebooks/mb3k-demo.ipynb](docs/notebooks/mb3k-demo.ipynb).

Data sources:

- Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., and Linnarsson, S. (2015). Brain structure. [Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq]( *Science*, **347**(6226), 1138–1142.
- [Hemberg Group scRNA-seq datasets](

## Citation

Zhang, Y. and Taylor, D. M. (2018) Scedar: a scalable Python package for single-cell RNA-seq data analysis, *In preparation*.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

scedar-0.1.2-py3-none-any.whl (51.5 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page