Skip to main content

Integration of scRNA-seq and spatial transcriptomics data

Project description

ENVI & COVET

ENVI is a deep learnining based variational inference method to integrate scRNA-seq with spatial transcriptomics data. ENVI learns to reconstruct spatial onto for dissociated scRNA-seq data and impute unimagd genes onto spatial data.

This implementation is written in Python3 and relies on jax, flax, sklearn, scipy and scanpy.

To install JAX, simply run the command:

pip install -U "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

And to install ENVI along with the rest of the requirements:

pip install scenvi

To run ENVI:

import scenvi 

envi_model = scenvi.ENVI(spatial_data = st_data, sc_data = sc_data)

envi_model.train()
envi_model.impute_genes()
envi_model.infer_niche_covet()
envi_model.infer_niche_celltype()

st_data.obsm['envi_latent'] = envi_model.spatial_data.obsm['envi_latent']
st_data.uns['COVET_genes'] =  envi_model.CovGenes
st_data.obsm['COVET'] = envi_model.spatial_data.obsm['COVET']
st_data.obsm['COVET_SQRT'] = envi_model.spatial_data.obsm['COVET_SQRT']
st_data.obsm['cell_type_niche'] = envi_model.spatial_data.obsm['cell_type_niche']
st_data.obsm['imputation'] = envi_model.spatial_data.obsm['imputation']


sc_data.obsm['envi_latent'] = envi_model.sc_data.obsm['envi_latent']
sc_data.uns['COVET_genes'] =  envi_model.CovGenes
sc_data.obsm['COVET'] = envi_model.sc_data.obsm['COVET']
sc_data.obsm['COVET_SQRT'] = envi_model.sc_data.obsm['COVET_SQRT']
sc_data.obsm['cell_type_niche'] = envi_model.sc_data.obsm['cell_type_niche']

And to just compute COVET for spatial data:

st_data.obsm['COVET'], st_data.obsm['COVET_SQRT'], st_data.uns['CovGenes'] = scenvi.compute_covet(st_data)

Please read our documentation and see a full tutorial at https://scenvi.readthedocs.io/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scenvi-0.3.7.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

scenvi-0.3.7-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file scenvi-0.3.7.tar.gz.

File metadata

  • Download URL: scenvi-0.3.7.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.5 Linux/3.10.0-1160.45.1.el7.x86_64

File hashes

Hashes for scenvi-0.3.7.tar.gz
Algorithm Hash digest
SHA256 dcbcafca7a7e213e60c0ae1cc246e583a350762802035a6d18c1d35b593d5c71
MD5 b9e98c1309e74b7196e1f4b6e4e88c37
BLAKE2b-256 03d10fdc234b715c8f169f4f7d769dc8c89801c08d05d6045addcf17dbc70a49

See more details on using hashes here.

File details

Details for the file scenvi-0.3.7-py3-none-any.whl.

File metadata

  • Download URL: scenvi-0.3.7-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.5 Linux/3.10.0-1160.45.1.el7.x86_64

File hashes

Hashes for scenvi-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 dedff284afb3716954c16b2536ea798577687a17242676d4ae8c82e802d15928
MD5 63214361faf52dfb107a16b43da0dadd
BLAKE2b-256 cef29c023b03479800ce753e590dd8558c8fdaffddeda6d0806830d95f154a2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page