Skip to main content

ENVI

Project description

ENVI - Integrating scRNA-seq and spatial data to impute missing genes and reconstruct spatial context

Installation

Install ENVI (and COVET) through pypi:

pip install scENVI

Tutorial

For a tutorial on how to run ENVI and analyze the results, go to example notebook at: https://github.com/dpeerlab/ENVI/blob/main/MOp_MERFISH_tutorial.ipynb.

Usage

To run ENVI:

from scENVI import ENVI

ENVI_Model = ENVI.ENVI(spatial_data = st_data, sc_data = sc_data)
ENVI_Model.Train()
ENVI_Model.impute()
ENVI_Model.infer_cov()

and to get the model's outputs:

st_data.obsm['envi_latent'] = ENVI_Model.spatial_data.obsm['envi_latent']
st_data.obsm['COVET'] = ENVI_Model.spatial_data.obsm['COVET']
st_data.obsm['COVET_SQRT'] = ENVI_Model.spatial_data.obsm['COVET_SQRT']
st_data.uns['COVET_genes'] =  ENVI_Model.CovGenes

st_data.obsm['imputation'] = ENVI_Model.spatial_data.obsm['imputation']


sc_data.obsm['envi_latent'] = ENVI_Model.sc_data.obsm['envi_latent']
sc_data.obsm['COVET'] = ENVI_Model.sc_data.obsm['COVET']
sc_data.obsm['COVET_SQRT'] = ENVI_Model.sc_data.obsm['COVET_SQRT']
sc_data.uns['COVET_genes'] =  ENVI_Model.CovGenes

And To run COVET (just on spatial data):

ENVI.COVET(st_data, k = 8, g = 64, spatial_key = 'spatial')

COVET information will be in:

st_data.obsm['COVET'] 
st_data.obsm['COVET_SQRT'] 
st_data.uns['COVET_Genes']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scENVI-0.1.0.tar.gz (16.5 kB view hashes)

Uploaded Source

Built Distributions

scenvi-0.1.0-py3-none-any.whl (18.3 kB view hashes)

Uploaded Python 3

scENVI-0.1.0-py3-none-any.whl (16.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page