ENVI
Project description
ENVI - Integrating scRNA-seq and spatial data to impute missing genes and reconstruct spatial context
Installation
Install ENVI (and COVET) through pypi:
pip install scENVI
Tutorial
For a tutorial on how to run ENVI and analyze the results, go to example notebook at: https://github.com/dpeerlab/ENVI/blob/main/MOp_MERFISH_tutorial.ipynb.
Usage
To run ENVI:
from scENVI import ENVI
ENVI_Model = ENVI.ENVI(spatial_data = st_data, sc_data = sc_data)
ENVI_Model.Train()
ENVI_Model.impute()
ENVI_Model.infer_cov()
and to get the model's outputs:
st_data.obsm['envi_latent'] = ENVI_Model.spatial_data.obsm['envi_latent']
st_data.obsm['COVET'] = ENVI_Model.spatial_data.obsm['COVET']
st_data.obsm['COVET_SQRT'] = ENVI_Model.spatial_data.obsm['COVET_SQRT']
st_data.uns['COVET_genes'] = ENVI_Model.CovGenes
st_data.obsm['imputation'] = ENVI_Model.spatial_data.obsm['imputation']
sc_data.obsm['envi_latent'] = ENVI_Model.sc_data.obsm['envi_latent']
sc_data.obsm['COVET'] = ENVI_Model.sc_data.obsm['COVET']
sc_data.obsm['COVET_SQRT'] = ENVI_Model.sc_data.obsm['COVET_SQRT']
sc_data.uns['COVET_genes'] = ENVI_Model.CovGenes
And To run COVET (just on spatial data):
ENVI.COVET(st_data, k = 8, g = 64, spatial_key = 'spatial')
COVET information will be in:
st_data.obsm['COVET']
st_data.obsm['COVET_SQRT']
st_data.uns['COVET_Genes']
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scENVI-0.1.0.tar.gz
(16.5 kB
view hashes)
Built Distributions
scenvi-0.1.0-py3-none-any.whl
(18.3 kB
view hashes)
scENVI-0.1.0-py3-none-any.whl
(16.5 kB
view hashes)