Skip to main content

Produce a plan that dispatches calls based on a graph of functions, satisfying data dependencies.

Project description

What is schedula?

Schedula implements a intelligent function scheduler, which selects and executes functions. The order (workflow) is calculated from the provided inputs and the requested outputs. A function is executed when all its dependencies (i.e., inputs, input domain) are satisfied and when at least one of its outputs has to be calculated.

Note: Schedula is performing the runtime selection of the

minimum-workflow to be invoked. A workflow describes the overall process - i.e., the order of function execution - and it is defined by a directed acyclic graph (DAG). The minimum-workflow is the DAG where each output is calculated using the shortest path from the provided inputs. The path is calculated on the basis of a weighed directed graph (data-flow diagram) with a modified Dijkstra algorithm.

Installation

To install it use (with root privileges):

$ pip install schedula

Or download the last git version and use (with root privileges):

$ python setup.py install

Install extras

Some additional functionality is enabled installing the following extras:

  • plot: enables the plot of the Dispatcher model and workflow (see

    plot()).

  • web: enables to build a dispatcher Flask app (see web()).

  • sphinx: enables the sphinx extension directives (i.e., autosummary

    and dispatcher).

To install schedula and all extras, do:

$ pip install schedula[all]

Why may I use schedula?

Imagine we have a system of interdependent functions - i.e. the inputs of a function are the output for one or more function(s), and we do not know which input the user will provide and which output will request. With a normal scheduler you would have to code all possible implementations. I’m bored to think and code all possible combinations of inputs and outputs from a model.

Solution

Schedula allows to write a simple model (Dispatcher()) with just the basic functions, then the Dispatcher() will select and execute the proper functions for the given inputs and the requested outputs. Moreover, schedula provides a flexible framework for structuring code. It allows to extract sub-models from a bigger one.

Note: A successful application

is CO_2MPAS, where schedula has been used

to model an entire vehicle.

Very simple example

Let’s assume that we have to extract some filesystem attributes and we do not know which inputs the user will provide. The code below shows how to create a Dispatcher() adding the functions that define your system. Note that with this simple system the maximum number of inputs combinations is 31 ((2^n - 1), where n is the number of data).

>>> import schedula
>>> import os.path as osp
>>> dsp = schedula.Dispatcher()
>>> dsp.add_data(data_id='dirname', default_value='.', initial_dist=2)
'dirname'
>>> dsp.add_function(function=osp.split, inputs=['path'],
...                  outputs=['dirname', 'basename'])
'split'
>>> dsp.add_function(function=osp.splitext, inputs=['basename'],
...                  outputs=['fname', 'suffix'])
'splitext'
>>> dsp.add_function(function=osp.join, inputs=['dirname', 'basename'],
...                  outputs=['path'])
'join'
>>> dsp.add_function(function_id='union', function=lambda *a: ''.join(a),
...                  inputs=['fname', 'suffix'], outputs=['basename'])
'union'

[graph]

Tip: You can explore the diagram by clicking on it.

Note: For more details how to created a Dispatcher() see:

add_data(), add_function(), add_dispatcher(), SubDispatch(), SubDispatchFunction(), SubDispatchPipe(), and DFun().

The next step to calculate the outputs would be just to run the dispatch() method. You can invoke it with just the inputs, so it will calculate all reachable outputs:

>>> inputs = {'path': 'schedula/_version.py'}
>>> o = dsp.dispatch(inputs=inputs)
>>> o
Solution([('path', 'schedula/_version.py'),
          ('basename', '_version.py'),
          ('dirname', 'schedula'),
          ('fname', '_version'),
          ('suffix', '.py')])

[graph]

or you can set also the outputs, so the dispatch will stop when it will find all outputs:

>>> o = dsp.dispatch(inputs=inputs, outputs=['basename'])
>>> o
Solution([('path', 'schedula/_version.py'), ('basename', '_version.py')])

[graph]

Project details


Release history Release notifications | RSS feed

This version

0.2.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schedula-0.2.2.tar.gz (76.3 kB view details)

Uploaded Source

Built Distribution

schedula-0.2.2-py3-none-any.whl (73.3 kB view details)

Uploaded Python 3

File details

Details for the file schedula-0.2.2.tar.gz.

File metadata

  • Download URL: schedula-0.2.2.tar.gz
  • Upload date:
  • Size: 76.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.15.0 CPython/3.6.6

File hashes

Hashes for schedula-0.2.2.tar.gz
Algorithm Hash digest
SHA256 b76cc45889da75c737200ead18180d459f335a58a1bbb6d3ae7c04a8fc898442
MD5 1a268ca3be8715ad123f2d703a59c0eb
BLAKE2b-256 318e177edb64c2f4a49d669feddd8585c54d08ddef392a409959387e9b98eec1

See more details on using hashes here.

File details

Details for the file schedula-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: schedula-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 73.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.15.0 CPython/3.6.6

File hashes

Hashes for schedula-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e01d2ef589a068df88c7e72a971bcd9727661e67a4a39dbb3d550f337768250d
MD5 d95b105180620e12dc59217974fe3f0f
BLAKE2b-256 a50f40bbe20d759d876f11feff349aca6cd830911fb5ed5a138502cb8c475347

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page