Skip to main content

Scheil-Gulliver simulations using pycalphad.

Project description

A Scheil-Gulliver simulation tool using pycalphad.

https://zenodo.org/badge/150358281.svg
import matplotlib.pyplot as plt
from pycalphad import Database, variables as v
from scheil import simulate_scheil_solidification

# setup the simulation parameters
dbf = Database('alzn_mey.tdb')
comps = ['AL', 'ZN', 'VA']
phases = sorted(dbf.phases.keys())

liquid_phase_name = 'LIQUID'
initial_composition = {v.X('ZN'): 0.3}
start_temperature = 850

# perform the simulation
sol_res = simulate_scheil_solidification(dbf, comps, phases, initial_composition, start_temperature, step_temperature=1.0)

# plot the result
for phase_name, amounts in sol_res.cum_phase_amounts.items():
    plt.plot(sol_res.temperatures, amounts, label=phase_name)
plt.plot(sol_res.temperatures, sol_res.fraction_liquid, label='LIQUID')
plt.ylabel('Phase Fraction')
plt.xlabel('Temperature (K)')
plt.title('Al-30Zn Scheil simulation, phase fractions')
plt.legend(loc='best')
plt.show()
Phase fraction evolution during a Scheil simulation of Al-30Zn

Installation

Anaconda

conda install -c conda-forge scheil

Development versions

To install an editable development version with pip:

git clone https://github.com/pycalphad/scheil.git
cd scheil
pip install --editable .[dev]

Upgrading scheil later requires you to run git pull in this directory.

Run the automated tests using

pytest

Theory

Uses classic Scheil-Gulliver theory (see G.H. Gulliver, J. Inst. Met. 9 (1913) 120–157 and Scheil, Zeitschrift Für Met. 34 (1942) 70–72.) with assumptions of

  1. Perfect mixing in the liquid

  2. Local equilibrium between solid and liquid

  3. No diffusion in the solid

Getting Help

For help on installing and using scheil, please join the pycalphad/pycalphad Gitter room.

Bugs and software issues should be reported on GitHub.

License

scheil is MIT licensed. See LICENSE.

Citing

https://zenodo.org/badge/150358281.svg

If you use the scheil package in your work, please cite the relevant version.

The following DOI, doi:10.5281/zenodo.3630656, will link to the latest released version of the code on Zenodo where you can cite the specific version that you haved used. For example, version 0.1.2 can be cited as:

Bocklund, Brandon, Bobbio, Lourdes D., Otis, Richard A., Beese, Allison M., & Liu, Zi-Kui. (2020, January 29). pycalphad-scheil: 0.1.2 (Version 0.1.2). Zenodo. http://doi.org/10.5281/zenodo.3630657
@software{bocklund_brandon_2020_3630657,
  author       = {Bocklund, Brandon and
                  Bobbio, Lourdes D. and
                  Otis, Richard A. and
                  Beese, Allison M. and
                  Liu, Zi-Kui},
  title        = {pycalphad-scheil: 0.1.2},
  month        = jan,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {0.1.2},
  doi          = {10.5281/zenodo.3630657},
  url          = {https://doi.org/10.5281/zenodo.3630657}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scheil-0.3.0.tar.gz (68.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scheil-0.3.0-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file scheil-0.3.0.tar.gz.

File metadata

  • Download URL: scheil-0.3.0.tar.gz
  • Upload date:
  • Size: 68.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for scheil-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f029d19f22c073f47440189c335f4fd9dd3fc6eb8a00acf726d80d7b9da14e1a
MD5 dcbb0e9fcbce7dedaab11b30e670064a
BLAKE2b-256 5178c79abf878bed9ae07b935a883d4bd00d81fdc5e54bb547a8b073c5654d81

See more details on using hashes here.

File details

Details for the file scheil-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: scheil-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for scheil-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f4d086f35d863147b534941077bbd8931bb82bf5b04306bc2a68d601737a4fd5
MD5 4d8e2dadc2e342250966520f70c84c7c
BLAKE2b-256 a6b70ab68bc15b9fa18627bbe02d8d03312e523e6f0d0034c1aa91410d4f90d2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page