Validate Python dictionaries like JSON schema
Project description
Usage
A schemadict is a regular Python dictionary which specifies the type and format of values for some given key. To check if a test dictionary is conform with the expected schema, schemadict provides the validate() method. If the test dictionary is ill-defined, an error will be thrown, otherwise None is returned.
Examples
Basic usage
>>> from schemadict import schemadict
>>> schema = schemadict({
... 'name': {
... 'type': str,
... 'min_len': 3,
... 'max_len': 12,
... },
... 'age': {
... 'type': int,
... '>=': 0,
... '<': 150,
... },
... })
>>>
>>> testdict = {'name': 'Neil', 'age': 55}
>>> schema.validate(testdict)
>>>
>>> testdict = {'name': 'Neil', 'age': -12}
>>> schema.validate(testdict)
Traceback (most recent call last):
...
ValueError: 'age' too small: expected >= 0, but was -12
>>>
>>> testdict = {'name': 'Neil', 'age': '55'}
>>> schema.validate(testdict)
Traceback (most recent call last):
...
TypeError: unexpected type for 'age': expected <class 'int'>, but was <class 'str'>
>>>
Nested schemadict
It is possible to check individual item in a list. For instance, in the following example we check if each item (of type str) looks like a valid IPv4 address. How each item should look like can be specified with the item_schema keyword.
>>> schema = schemadict({
... 'ip_addrs': {
... 'type': list,
... 'item_schema': {
... 'type': str,
... 'regex': r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$',
... },
... },
... })
>>>
>>>
>>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1']}) # Valid
>>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1', '1234.5678']}) # Last item invalid
Traceback (most recent call last):
...
ValueError: regex mismatch for 'ip_addrs': expected pattern '^\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}$', got '1234.5678'
>>>
Items in a list (or tuple) may themselves be dictionaries which can be described with schemadicts. In this case, we use the keyword item_schemadict as illustrated in the following example.
>>> schema_city = schemadict({
... 'name': {
... 'type': str
... },
... 'population': {
... 'type': int,
... '>=': 0,
... },
... })
>>>
>>> schema_country = schemadict({
... 'name': {'type': str},
... 'cities': {
... 'type': list,
... 'item_type': dict,
... 'item_schemadict': schema_city,
... },
... })
>>>
>>> test_country = {
... 'name': 'Neverland',
... 'cities': [
... {'name': 'Faketown', 'population': 3},
... {'name': 'Evergreen', 'population': True},
... ],
... }
>>>
>>> schema_country.validate(test_country)
Traceback (most recent call last):
...
TypeError: unexpected type for 'population': expected <class 'int'>, but was <class 'bool'>
>>>
Custom validation functions
Each type (int, bool, str, etc.) defines its own set of validation keywords and corresponding test functions. The dictionary STANDARD_VALIDATORS provided by the schemadict module contains the default validation functions for the Python’s built-in types. However, it is also possible to modify or extend this dictionary with custom validation functions.
>>> from schemadict import schemadict, STANDARD_VALIDATORS
>>> # Add a custom validation function
>>> def is_divisible(key, value, comp_value, _):
... if value % comp_value != 0:
... raise ValueError(f"{key!r} is not divisible by {comp_value}")
...
...
...
>>>
>>> # Update the standard validator dictionary
>>> my_validators = STANDARD_VALIDATORS
>>> my_validators[int]['%'] = is_divisible
>>> # Register the updated validator dictionary in the new schemadict instance
>>> s = schemadict({'my_num': {'type': int, '%': 3}}, validators=my_validators)
>>> s.validate({'my_num': 33})
>>> s.validate({'my_num': 4})
Traceback (most recent call last):
...
ValueError: 'my_num' is not divisible by 3
>>>
It is also possible to define custom types and custom test functions as shown in the following example.
>>> from schemadict import schemadict, STANDARD_VALIDATORS
>>> class MyOcean:
... has_dolphins = True
... has_plastic = False
...
>>>
>>> def has_dolphins(key, value, comp_value, _):
... if getattr(value, 'has_dolphins') is not comp_value:
... raise ValueError(f"{key!r} does not have dolphins")
...
>>>
>>> my_validators = STANDARD_VALIDATORS
>>> my_validators.update({MyOcean: {'has_dolphins': has_dolphins}})
>>>
>>> schema_ocean = schemadict(
... {'ocean': {'type': MyOcean, 'has_dolphins': True}},
... validators=my_validators,
... )
>>>
>>> ocean1 = MyOcean()
>>> schema_ocean.validate({'ocean': ocean1})
>>>
>>> ocean2 = MyOcean()
>>> ocean2.has_dolphins = False
>>> schema_ocean.validate({'ocean': ocean2})
Traceback (most recent call last):
...
ValueError: 'ocean' does not have dolphins
Full documentation: https://schemadict.readthedocs.io/
Features
What schemadict offers:
Built-in support for Python’s “primitive types”
Specify required and optional keys
Validate nested schemas
Add custom validation functions to built-in types
Add custom validation functions to custom types
Support for Regex checks of strings
Features currently in development
Metaschema validation
Lazy validation and summary of all errors
Allow schema variations: schmea 1 OR schema 2
Installation
Schemadict is available on PyPI and may simply be installed with
pip install schemadict
Idea
Schemadict is loosely inspired by JSON schema and jsonschema, a JSON schema validator for Python.
License
License: Apache-2.0
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file schemadict-0.0.12.tar.gz
.
File metadata
- Download URL: schemadict-0.0.12.tar.gz
- Upload date:
- Size: 14.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c524026466e40cbd91d34bc875ac20a47069e6cbd8016dbaf9d49961b5bc56e |
|
MD5 | 20759936ef2c793be411bd5c8b238c6c |
|
BLAKE2b-256 | f13f41a4f43cbe4edf9815c9a1048ccfec98305a140d2d5d04ce8e7194906b96 |
File details
Details for the file schemadict-0.0.12-py3-none-any.whl
.
File metadata
- Download URL: schemadict-0.0.12-py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 102d061831769d19948e675d9aabd1c1741449bce6eb82dc3f455fa7f2b0a255 |
|
MD5 | 90e507d4c2c3402348976cbac6510769 |
|
BLAKE2b-256 | 1428c27e3112a6a521f21f7996570379018f62a36f37270891965932fd92c1d6 |