Skip to main content

Validate Python dictionaries like JSON schema

Project description

Latest PyPI version Documentation Status License Build status Coverage

logo

A schemadict is a regular Python dictionary which specifies the type and format of values for some given key. To check if a test dictionary is conform with the expected schema, schemadict provides the validate() method. If the test dictionary is ill-defined, an error will be thrown, otherwise None is returned.

Examples

Basic usage

>>> from schemadict import schemadict

>>> schema = schemadict({
...     'name': {
...         'type': str,
...         'min_len': 3,
...         'max_len': 12,
...     },
...     'age': {
...         'type': int,
...         '>=': 0,
...         '<': 150,
...     },
... })
>>>
>>> testdict = {'name': 'Neil', 'age': 55}
>>> schema.validate(testdict)
>>>

>>> testdict = {'name': 'Neil', 'age': -12}
>>> schema.validate(testdict)
Traceback (most recent call last):
    ...
ValueError: 'age' too small: expected >= 0, but was -12
>>>

>>> testdict = {'name': 'Neil', 'age': '55'}
>>> schema.validate(testdict)
Traceback (most recent call last):
    ...
TypeError: unexpected type for 'age': expected <class 'int'>, but was <class 'str'>
>>>

Nested schemadict

It is possible to check individual item in a list. For instance, in the following example we check if each item (of type str) looks like a valid IPv4 address. How each item should look like can be specified with the item_schema keyword.

>>> schema = schemadict({
...     'ip_addrs': {
...         'type': list,
...         'item_schema': {
...             'type': str,
...             'regex': r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$',
...         },
...     },
... })
>>>
>>>
>>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1']})  # Valid
>>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1', '1234.5678']})  # Last item invalid
Traceback (most recent call last):
    ...
ValueError: regex mismatch for 'ip_addrs': expected pattern '^\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}$', got '1234.5678'
>>>

Items in a list (or tuple) may themselves be dictionaries which can be described with schemadicts. In this case, we use the keyword item_schemadict as illustrated in the following example.

>>> schema_city = schemadict({
...     'name': {
...         'type': str
...     },
...     'population': {
...         'type': int,
...         '>=': 0,
...     },
... })
>>>
>>> schema_country = schemadict({
...     'name': {'type': str},
...     'cities': {
...         'type': list,
...         'item_type': dict,
...         'item_schemadict': schema_city,
...     },
... })
>>>
>>> test_country = {
...     'name': 'Neverland',
...     'cities': [
...         {'name': 'Faketown', 'population': 3},
...         {'name': 'Evergreen', 'population': True},
...     ],
... }
>>>
>>> schema_country.validate(test_country)
Traceback (most recent call last):
    ...
TypeError: unexpected type for 'population': expected <class 'int'>, but was <class 'bool'>
>>>

Custom validation functions

Each type (int, bool, str, etc.) defines its own set of validation keywords and corresponding test functions. The dictionary STANDARD_VALIDATORS provided by the schemadict module contains the default validation functions for the Python’s built-in types. However, it is also possible to modify or extend this dictionary with custom validation functions.

>>> from schemadict import schemadict, STANDARD_VALIDATORS

>>> # Add a custom validation function
>>> def is_divisible(key, value, comp_value, _):
...     if value % comp_value != 0:
...             raise ValueError(f"{key!r} is not divisible by {comp_value}")
...
...
...
>>>

>>> # Update the standard validator dictionary
>>> my_validators = STANDARD_VALIDATORS
>>> my_validators[int]['%'] = is_divisible

>>> # Register the updated validator dictionary in the new schemadict instance
>>> s = schemadict({'my_num': {'type': int, '%': 3}}, validators=my_validators)

>>> s.validate({'my_num': 33})
>>> s.validate({'my_num': 4})
Traceback (most recent call last):
    ...
ValueError: 'my_num' is not divisible by 3
>>>

It is also possible to define custom types and custom test functions as shown in the following example.

>>> from schemadict import schemadict, STANDARD_VALIDATORS

>>> class MyOcean:
...     has_dolphins = True
...     has_plastic = False
...
>>>

>>> def has_dolphins(key, value, comp_value, _):
...     if getattr(value, 'has_dolphins') is not comp_value:
...         raise ValueError(f"{key!r} does not have dolphins")
...
>>>

>>> my_validators = STANDARD_VALIDATORS
>>> my_validators.update({MyOcean: {'has_dolphins': has_dolphins}})
>>>

>>> schema_ocean = schemadict(
...     {'ocean': {'type': MyOcean, 'has_dolphins': True}},
...     validators=my_validators,
... )
>>>

>>> ocean1 = MyOcean()
>>> schema_ocean.validate({'ocean': ocean1})
>>>

>>> ocean2 = MyOcean()
>>> ocean2.has_dolphins = False
>>> schema_ocean.validate({'ocean': ocean2})
Traceback (most recent call last):
    ...
ValueError: 'ocean' does not have dolphins

Full documentation: https://schemadict.readthedocs.io/

Features

What schemadict offers:

  • Built-in support for Python’s primitive types

  • Specify required and optional keys

  • Validate nested schemas

  • Add custom validation functions to built-in types

  • Add custom validation functions to custom types

  • Support for Regex checks of strings

Features currently in development

  • Metaschema validation

  • Lazy validation and summary of all errors

  • Allow schema variations: schmea 1 OR schema 2

  • Add support for validation of type number.Number

Installation

Schemadict is available on PyPI and may simply be installed with

pip install schemadict

Idea

Schemadict is loosely inspired by JSON schema and jsonschema, a JSON schema validator for Python.

License

License: Apache-2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schemadict-0.0.8.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

schemadict-0.0.8-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file schemadict-0.0.8.tar.gz.

File metadata

  • Download URL: schemadict-0.0.8.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.9

File hashes

Hashes for schemadict-0.0.8.tar.gz
Algorithm Hash digest
SHA256 795f67b9498d0f22e7cf297be3fb358423b426873317e782475fa499842eeb5c
MD5 3038eae4cdc61a754aad6ff954d1b476
BLAKE2b-256 54bdd31c2de1818015ad2ae44264490f2b0ac98237f805060f9d877e07501065

See more details on using hashes here.

Provenance

File details

Details for the file schemadict-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: schemadict-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.9

File hashes

Hashes for schemadict-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 efcb2057596859b571c92004135bdfb0ee546912821cc9e278f47e58c0ac9536
MD5 26efecb9f7027d76d2cbdf709ad57c57
BLAKE2b-256 adb6c729850177040164878af33778d066ac01f3d083f0117cd17576dc4357e9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page