Skip to main content

Set of tools that makes input data validation easier

Project description

Schematec
=========

.. image:: https://travis-ci.org/mylokin/redisext.svg?branch=master
:target: https://travis-ci.org/mylokin/redisext

Schematec is a set of tools that makes input data validation easier.
The purpose of this code is attempt to bring simplicity to applications
logics using separation of data validation and actual data processing.

Quickstart
----------

.. code:: python

import schematec as s

schema = s.dictionary(
id=s.integer & s.required,
name=s.string,
tags=s.array(s.string),
)

.. code:: python

>>> data = {
... 'id': '1',
... 'name': 'Red Hot Chili Peppers',
... 'tags': ['funk', 'rock'],
... 'rank': '1',
... }
>>> schema(data)
{'id': 1, 'name': u'Red Hot Chili Peppers', 'tags': [u'funk', u'rock']}


Concepts
--------

Schematec module is based on three basic concepts:

* Schema
* Validator
* Converter

Schema
^^^^^^

Term "schema" is used to describe complex data struct such as dictionary(hashmap)
or array(list). Schemas has two different types of validation (it is not related to
array schemas):

* Default - Only values with required validator are required, other values are optional
* Weak - All values are optional

`schematec.exc.SchemaError` is raised in case provided data is incorrect.

Order of schema validations:

#. Unbound Validators
#. Schemas(inner)
#. Converters
#. Bound Validators

Validator
^^^^^^^^^

Term "validator" describes callable objects that perform different types of checks.
There are two types of validators in schematec:

* Bound - type related, for example "max length" validator is bound to sized type.
* Unbound - universal, for example "required" validator.

Raises `schematec.exc.ValidationError`.

Schematec provides following validators:

required
check if value is provided

length
check iterable for max length

regex
check if given value is valid

Converter
^^^^^^^^^

Term "converter" is used to describe cast functions. Schematec supports subset of JSON
data types.

Basic types:

- integer(int)
- string(str)
- boolean(bool)

Containers:

- array(list)
- dictionary(dict)

Raises `schematec.exc.ConvertationError`.

Convertation rules
=================

integer
-------

#. Any int or long value
#. Any suitable string/unicode
#. Boolean value

number
-------

#. Any float or int or long value
#. Any suitable string/unicode
#. Boolean value

string
------

#. Any suitable string/unicode
#. Any int or long value

boolean
-------

#. Boolean value
#. 0 or 1
#. '0' or '1'
#. u'0' or u'1'

dictionary
----------

#. Any mapping value(collections.Mapping)

array
-----

#. Any iterable value(collections.Iterable), but not a mapping

Complex Descriptors
===================

"Schema", "validator" and "converter" are internally referenced as "descriptors". Common task is
creation of complex validation rules for a field(or "complex descriptors"). To do this use bitwise
"and" operator on descriptors:

.. code:: python

>>> import schematec
>>> schematec.integer & schematec.required
<schematec.abc.ComplexDescriptor object at 0x10b05a0d0>

Sugar Schema
============

Schematec supports additional "magic" way to define your schemas. You can use simple dicts and lists
to describe your data. For example:

.. code:: python

>>> import schematec as s
>>> schema = {
... 'a': [{
... 'b': s.integer,
... }]
... }
>>> data = {
... 'a': [{'b': 1}, {'b': '1'}, {}]
... }
>>> s.process(schema, data)
{'a': [{'b': 1}, {'b': 1}, {}]}

Examples
========

Recursive schema
----------------

.. code:: python

import schematec as s

schema = s.dictionary(
id=s.integer & s.required,
entity=s.dictionary(
name=s.string & s.required,
value=s.string,
)
)

.. code:: python

>>> data = {
... 'id': 1,
... 'entity': {
... 'name': 'song',
... 'value': 'californication',
... }
... }
>>> schema(data)
{'id': 1, 'entity': {'name': u'song', 'value': u'californication'}}


Errors handling
---------------

.. code:: python

import schematec as s

schema = s.dictionary(
id=s.integer & s.required,
entity=s.dictionary(
name=s.string & s.required,
value=s.string,
)
)

.. code:: python

>>> data = {
... 'id': 1,
... 'entity': {
... 'value': 'californication',
... }
... }
>>> schema(data)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "schematec/schema.py", line 44, in __call__
value = schema(value, weak=weak)
File "schematec/schema.py", line 32, in __call__
validator(name, data)
File "schematec/validators.py", line 12, in __call__
raise exc.ValidationError(name)
schematec.exc.ValidationError: name

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schematec-0.5.2.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

schematec-0.5.2-py2.py3-none-any.whl (5.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file schematec-0.5.2.tar.gz.

File metadata

  • Download URL: schematec-0.5.2.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for schematec-0.5.2.tar.gz
Algorithm Hash digest
SHA256 0fffa6796755492cd7010ba2a53a40daeb7e01590eb7cc4f6e886cb7af8f212f
MD5 ef54bf5c29f2d5601f19e048d3f16f0d
BLAKE2b-256 999c64dade4c0724378c7aa018efa1003bc99c165c32980a470384e190b17117

See more details on using hashes here.

File details

Details for the file schematec-0.5.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for schematec-0.5.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d4ac929be19da00dbdbc0feed3a79cfe3a3a417ff29b6ec11b8ce480416e7642
MD5 325721be402a0932122f484de3ff64b3
BLAKE2b-256 09ffd6c73ee2523dd864846291f277a5684b343faf3f410649df95409b67ecce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page