Convenient anonymous and nested models using dict literal syntax for Schematics.
Project description
Schematics Factory
==================
Inspired by [Voluptuous](https://github.com/alecthomas/voluptuous).
It's sometimes inconvenient to define
named [Schematics](https://github.com/schematics/schematics)
Models, especially when those models are deeply nested.
Example:
```
class InnerModel(Model):
inner_bool = BooleanType()
class MiddleModel(Model):
middle_int = IntType()
middle_nested = ModelType(InnerModel)
class OuterModel(Model):
outer_str = StringType()
outer_nested = ModelType(MiddleModel)
model_instance = OuterModel(input_)
model_instance.validate()
```
So, this library provides a convenient syntax for defining
deeply nested Models.
```
from schematics_factory import model
OuterModel = model({
'outer_str': StringType(),
'outer_nested': ModelType(model({
'middle_int': IntType(),
'middle_nested': ModelType(model({
'inner_bool': BooleanType()
}))
}))
})
model_instance = OuterModel(input_)
model_instance.validate()
```
The model() function can also be imported as _model_factory_.
Alternative Syntax
------------------
Schema factory arguments can also be supplied as keyword
arguments rather than a dictionary.
```
Person = model(name=StringType(), age=IntType())
person = Person(dict(name='Test', age=27))
person.validate()
```
For nested Models, a concise __nested()__ convenience function
is provided to replace ModelType(model(...)) with nested(...).
The nested() function can also be imported as _nested_model_.
```
from schematics_factory import model, nested
Person = model(name=StringType(), pet=nested(name=StringType()))
person = Person(dict(name='Test', pet=dict(name='Rover')))
person.validate()
```
Nested models can also be provided as plain dictionary literals.
```
Person = model(name=StringType(), pet=dict(name=StringType()))
person = Person(dict(name='Test', pet=dict(name='Rover')))
person.validate()
```
Or equivalently...
```
Person = model({
'name': StringType(),
'pet': {
'name': StringType()
}
})
person = Person({
'name': 'Test',
'pet': {
'name': 'Rover'
}
})
person.validate()
```
==================
Inspired by [Voluptuous](https://github.com/alecthomas/voluptuous).
It's sometimes inconvenient to define
named [Schematics](https://github.com/schematics/schematics)
Models, especially when those models are deeply nested.
Example:
```
class InnerModel(Model):
inner_bool = BooleanType()
class MiddleModel(Model):
middle_int = IntType()
middle_nested = ModelType(InnerModel)
class OuterModel(Model):
outer_str = StringType()
outer_nested = ModelType(MiddleModel)
model_instance = OuterModel(input_)
model_instance.validate()
```
So, this library provides a convenient syntax for defining
deeply nested Models.
```
from schematics_factory import model
OuterModel = model({
'outer_str': StringType(),
'outer_nested': ModelType(model({
'middle_int': IntType(),
'middle_nested': ModelType(model({
'inner_bool': BooleanType()
}))
}))
})
model_instance = OuterModel(input_)
model_instance.validate()
```
The model() function can also be imported as _model_factory_.
Alternative Syntax
------------------
Schema factory arguments can also be supplied as keyword
arguments rather than a dictionary.
```
Person = model(name=StringType(), age=IntType())
person = Person(dict(name='Test', age=27))
person.validate()
```
For nested Models, a concise __nested()__ convenience function
is provided to replace ModelType(model(...)) with nested(...).
The nested() function can also be imported as _nested_model_.
```
from schematics_factory import model, nested
Person = model(name=StringType(), pet=nested(name=StringType()))
person = Person(dict(name='Test', pet=dict(name='Rover')))
person.validate()
```
Nested models can also be provided as plain dictionary literals.
```
Person = model(name=StringType(), pet=dict(name=StringType()))
person = Person(dict(name='Test', pet=dict(name='Rover')))
person.validate()
```
Or equivalently...
```
Person = model({
'name': StringType(),
'pet': {
'name': StringType()
}
})
person = Person({
'name': 'Test',
'pet': {
'name': 'Rover'
}
})
person.validate()
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file schematics-factory-0.1.0.tar.gz.
File metadata
- Download URL: schematics-factory-0.1.0.tar.gz
- Upload date:
- Size: 2.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1b6e65e26ce44590fbd1235a45a43206b380c66e70eb05a0a4b7e4f1df4c4a59
|
|
| MD5 |
ec63af996a163433bf6c7e4ec123566e
|
|
| BLAKE2b-256 |
e72fb1b3d59ef04399e708f5ddfd3f0d1e0592bf25ef01139da01af886d1a7a4
|
File details
Details for the file schematics_factory-0.1.0-py2.py3-none-any.whl.
File metadata
- Download URL: schematics_factory-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 4.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a71d655965c1539ea180ae2b2556b9838301878b76282848c7d4c3f9d3833416
|
|
| MD5 |
cc61427298c53a75a055c08019a1511a
|
|
| BLAKE2b-256 |
3ebe39fac2919068c2b7f22a09601846c0c4a60bdbb1d69c4e7c706441227730
|