Compute scholarly metrics in Python with Pandas and NumPy Edit
Project description
Compute scholarly metrics in Python with Pandas and NumPy.
Documentation: https://scholarmetrics.readthedocs.io.
Examples
J.E. Hirsch’s h-index or Hirsch-index:
>>> from scholarmetrics import hindex
>>> citations = [6, 10, 5, 46, 0, 2]
>>> hindex(citations)
4
Euclidean index:
>>> from scholarmetrics import euclidean
>>> citations = [6, 10, 5, 46, 0, 2]
>>> euclidean(citations)
47.75981574503821
Contributing
Please see CONTRIBUTING.rst.
For a list of contributors see AUTHORS.rst.
License
MIT License, see LICENSE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scholarmetrics-0.2.2.tar.gz
(15.9 kB
view hashes)
Built Distribution
Close
Hashes for scholarmetrics-0.2.2-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4dfb374c05fcd3bd30c891760faec0c5c863ecce8cce1d0f0b02ea1fe19c0b5 |
|
MD5 | 6b58c8cb2c3b4b5c17f9de91a12fb285 |
|
BLAKE2b-256 | ea6881001732de2ead6cf6ae9fec18fe49bfd65008576ce865bc4d5e72cdc172 |