Skip to main content

Compute scholarly metrics in Python with Pandas and NumPy Edit

Project description

Compute scholarly metrics in Python with Pandas and NumPy.

Documentation: Documentation Status Code Climate Build Status


  • J.E. Hirsch’s h-index or Hirsch-index:
>>> from scholarmetrics import hindex
>>> citations = [6, 10, 5, 46, 0, 2]
>>> hindex(citations)
  • Euclidean index:
>>> from scholarmetrics import euclidean
>>> citations = [6, 10, 5, 46, 0, 2]
>>> euclidean(citations)


Contributions welcome

Please see CONTRIBUTING.rst.


MIT License, see LICENSE.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for scholarmetrics, version 0.2.1
Filename, size File type Python version Upload date Hashes
Filename, size scholarmetrics-0.2.1.tar.gz (13.4 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page