Skip to main content

Compute scholarly metrics in Python with Pandas and NumPy Edit

Project description

Compute scholarly metrics in Python with Pandas and NumPy.

Documentation: https://scholarmetrics.readthedocs.io.

https://img.shields.io/pypi/v/scholarmetrics.svg Documentation Status Code Climate Build Status

Examples

  • J.E. Hirsch’s h-index or Hirsch-index:
>>> from scholarmetrics import hindex
>>> citations = [6, 10, 5, 46, 0, 2]
>>> hindex(citations)
4
  • Euclidean index:
>>> from scholarmetrics import euclidean
>>> citations = [6, 10, 5, 46, 0, 2]
>>> euclidean(citations)
47.75981574503821

Contributing

Contributions welcome

Please see CONTRIBUTING.rst.

License

MIT License, see LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scholarmetrics-0.2.1.tar.gz (13.4 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page