Skip to main content

This Python module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, action and multiplication of Schubert classes, and conversion between different representations of Schubert classes

Project description

schubertpy

Overview

schubertpy is a powerful Python package designed for performing advanced mathematical operations on the Grassmannian, a key concept in algebraic geometry and representation theory. This module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, and the manipulation of Schubert classes. It is a Python implementation based on the comprehensive maple library available at https://sites.math.rutgers.edu/~asbuch/qcalc/.

Features

  • Quantum Pieri Rule Calculations: Efficient computation of quantum Pieri rules applied to Schubert classes.
  • Quantum Giambelli Formulae: Expression of products of Schubert classes in alternative forms using quantum Giambelli formulae.
  • Schubert Class Operations: Perform actions and multiplications on Schubert classes, in both classical and quantum contexts.
  • Dualization and Conversion: Dualize Schubert classes and convert between different Schubert class representations.

Installation

To install the schubertpy module, run the following command:

pip install schubertpy

Usage

Example usage demonstrating the capabilities of schubertpy:

from schubertpy import Grassmannian, OrthogonalGrassmannian, IsotropicGrassmannian

def main():
    # Initialize the Grassmannian object with dimensions
    gr = Grassmannian(2, 5)
    print(gr.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.qgiambelli('S[2,1]*S[2,1]'))
    print(gr.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.giambelli('S[2,1]*S[2,1]'))
    print(gr.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.dualize('S[1]+S[2]'))


    ig = Grassmannian(2, 6)
    print(ig.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.qgiambelli('S[2,1]*S[2,1]'))
    print(ig.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.giambelli('S[2,1]*S[2,1]'))
    print(ig.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 6)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 7)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))


if __name__ == "__main__":
    main()

For detailed examples and more operations, refer to the test cases provided within the module's documentation.

Running Tests

To verify the module's functionality, you can run the included tests with either of the following commands:

make test

Or directly with Python:

python3 -m unittest schubertpy/testcases/*.py

Contributing

Contributions to schubertpy are highly encouraged, whether they involve extending functionality, enhancing performance, or fixing bugs. Please feel free to submit issues or pull requests on GitHub to suggest changes or improvements.

License

schubertpy is made available under the MIT License. For more details, see the LICENSE file included with the source code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schubertpy-0.3.12.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

schubertpy-0.3.12-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file schubertpy-0.3.12.tar.gz.

File metadata

  • Download URL: schubertpy-0.3.12.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.12.tar.gz
Algorithm Hash digest
SHA256 b82cb9452277e7fce7f1e5d69cd994d4b95029af929a578900b8e129d87fb0e5
MD5 a9cfc31a9e55cf6138b9a9380e249863
BLAKE2b-256 07fe41290d9bc9e73ad8fed63eaa6ee6c3fc21774937ee0e875a1d5346e6eabc

See more details on using hashes here.

File details

Details for the file schubertpy-0.3.12-py3-none-any.whl.

File metadata

  • Download URL: schubertpy-0.3.12-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.12-py3-none-any.whl
Algorithm Hash digest
SHA256 0f7177f5a4b6f39bc1a969f87ae30c3bfd9ad4bb202f55f3fbecd06e6adc5d76
MD5 d96d1a0fb31a15ee99a16ac77ffd33c6
BLAKE2b-256 016694032cfb37f6caa60748e41cb5551339b8d5e27d9858340ed1d39cd9eec0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page