Skip to main content

This Python module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, action and multiplication of Schubert classes, and conversion between different representations of Schubert classes

Project description

schubertpy

Overview

schubertpy is a powerful Python package designed for performing advanced mathematical operations on the Grassmannian, a key concept in algebraic geometry and representation theory. This module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, and the manipulation of Schubert classes. It is a Python implementation based on the comprehensive maple library available at https://sites.math.rutgers.edu/~asbuch/qcalc/.

References:

Features

  • Quantum Pieri Rule Calculations: Efficient computation of quantum Pieri rules applied to Schubert classes.
  • Quantum Giambelli Formulae: Expression of products of Schubert classes in alternative forms using quantum Giambelli formulae.
  • Schubert Class Operations: Perform actions and multiplications on Schubert classes, in both classical and quantum contexts.
  • Dualization and Conversion: Dualize Schubert classes and convert between different Schubert class representations.

Installation

To install the schubertpy module, run the following command:

pip install schubertpy

If you wanna use with sagemath, run the following command:

sage -pip install schubertpy

Usage

Example usage demonstrating the capabilities of schubertpy:

from schubertpy import Grassmannian, OrthogonalGrassmannian, IsotropicGrassmannian

def main():
    # Initialize the Grassmannian object with dimensions
    gr = Grassmannian(2, 5)
    print(gr.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.qgiambelli('S[2,1]*S[2,1]'))
    print(gr.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.giambelli('S[2,1]*S[2,1]'))
    print(gr.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.dualize('S[1]+S[2]'))


    ig = Grassmannian(2, 6)
    print(ig.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.qgiambelli('S[2,1]*S[2,1]'))
    print(ig.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.giambelli('S[2,1]*S[2,1]'))
    print(ig.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 6)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 7)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))


if __name__ == "__main__":
    main()

You wanna use with sagemath? You can save above example to main.py and then run:

sage -python main.py

For detailed examples and more operations, refer to the test cases provided within the module's documentation.

Running Tests

To verify the module's functionality, you can run the included tests with either of the following commands:

make test

Or directly with Python:

python3 -m unittest schubertpy/testcases/*.py

Contributing

Contributions to schubertpy are highly encouraged, whether they involve extending functionality, enhancing performance, or fixing bugs. Please feel free to submit issues or pull requests on GitHub to suggest changes or improvements.

License

schubertpy is made available under the MIT License. For more details, see the LICENSE file included with the source code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schubertpy-0.3.14.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

schubertpy-0.3.14-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file schubertpy-0.3.14.tar.gz.

File metadata

  • Download URL: schubertpy-0.3.14.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.14.tar.gz
Algorithm Hash digest
SHA256 5a71ccd0170709052cfacc2744945b6dda045e98e7f21ee6a3fa43a5eba6c089
MD5 de85333dcf04b721602958871eb51479
BLAKE2b-256 cb5a688bea49192231c0a93cf2d3bca3500c31bc256e12a67d68daed939669ec

See more details on using hashes here.

File details

Details for the file schubertpy-0.3.14-py3-none-any.whl.

File metadata

  • Download URL: schubertpy-0.3.14-py3-none-any.whl
  • Upload date:
  • Size: 26.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.14-py3-none-any.whl
Algorithm Hash digest
SHA256 ce076e297ad9e3c766a28650effb32f72287695f45d9b6f8201ada40014c01a8
MD5 24e836783ebb0f4565e2f62649225245
BLAKE2b-256 30294a92717739ae1941d6643090cc00fc9c9d571962a258819b463e9da7a623

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page