Skip to main content

This Python module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, action and multiplication of Schubert classes, and conversion between different representations of Schubert classes

Project description

schubertpy

Overview

schubertpy is a powerful Python package designed for performing advanced mathematical operations on the Grassmannian, a key concept in algebraic geometry and representation theory. This module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, and the manipulation of Schubert classes. It is a Python implementation based on the comprehensive maple library available at https://sites.math.rutgers.edu/~asbuch/qcalc/.

References:

Features

  • Quantum Pieri Rule Calculations: Efficient computation of quantum Pieri rules applied to Schubert classes.
  • Quantum Giambelli Formulae: Expression of products of Schubert classes in alternative forms using quantum Giambelli formulae.
  • Schubert Class Operations: Perform actions and multiplications on Schubert classes, in both classical and quantum contexts.
  • Dualization and Conversion: Dualize Schubert classes and convert between different Schubert class representations.

Installation

To install the schubertpy module, run the following command:

pip install schubertpy

If you wanna use with sagemath, run the following command:

sage -pip install schubertpy

Usage

Example usage demonstrating the capabilities of schubertpy:

from schubertpy import Grassmannian, OrthogonalGrassmannian, IsotropicGrassmannian

def main():
    # Initialize the Grassmannian object with dimensions
    gr = Grassmannian(2, 5)
    print(gr.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.qgiambelli('S[2,1]*S[2,1]'))
    print(gr.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.giambelli('S[2,1]*S[2,1]'))
    print(gr.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.dualize('S[1]+S[2]'))


    ig = Grassmannian(2, 6)
    print(ig.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.qgiambelli('S[2,1]*S[2,1]'))
    print(ig.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.giambelli('S[2,1]*S[2,1]'))
    print(ig.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 6)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 7)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))


if __name__ == "__main__":
    main()

You wanna use with sagemath? You can save above example to main.py and then run:

sage -python main.py

For detailed examples and more operations, refer to the test cases provided within the module's documentation.

Running Tests

To verify the module's functionality, you can run the included tests with either of the following commands:

make test

Or directly with Python:

python3 -m unittest schubertpy/testcases/*.py

Authors

Contributing

We highly encourage contributions to schubertpy. Whether you are looking to expand functionality, enhance performance, or fix bugs, your input is valuable. To get started:

  • Report Issues: If you encounter issues or have suggestions, please report them by creating an issue on our GitHub page.
  • Submit Pull Requests: Feel free to fork the repository and submit pull requests. Whether it's adding new features, optimizing existing code, or correcting bugs, your contributions are welcome.

Please ensure your pull requests are well-documented and include any necessary tests. For more details on contributing, refer to our contribution guidelines on GitHub.

License

schubertpy is open source software (under the GNU General Public License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schubertpy-0.3.20.tar.gz (36.3 kB view details)

Uploaded Source

Built Distribution

schubertpy-0.3.20-py3-none-any.whl (39.1 kB view details)

Uploaded Python 3

File details

Details for the file schubertpy-0.3.20.tar.gz.

File metadata

  • Download URL: schubertpy-0.3.20.tar.gz
  • Upload date:
  • Size: 36.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.20.tar.gz
Algorithm Hash digest
SHA256 a4828f22993a83fd5d8b5d356bbaea6b3598c5a1ebe8a9f372725ede73df9ae2
MD5 ab60cea8844db905c31a910c8bccb4d6
BLAKE2b-256 caab660610ffde7e382f862203c1428216a3eef8caa320e89a1e723bce3d9b38

See more details on using hashes here.

File details

Details for the file schubertpy-0.3.20-py3-none-any.whl.

File metadata

  • Download URL: schubertpy-0.3.20-py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.20-py3-none-any.whl
Algorithm Hash digest
SHA256 d481781d81ec2fcd406efe6ba306bc44ac7ffd618917577f4c1d6e0a6631805b
MD5 4862cfc3370a6064b0626a93b1e8c3c8
BLAKE2b-256 a9e6e21c6b99e4bf05d89176ba511b8e7bbe5f25b0c74f7e5d0e88d24f0e89ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page