Skip to main content

This Python module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, action and multiplication of Schubert classes, and conversion between different representations of Schubert classes

Project description

schubertpy

Overview

schubertpy is a powerful Python package designed for performing advanced mathematical operations on the Grassmannian, a key concept in algebraic geometry and representation theory. This module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, and the manipulation of Schubert classes. It is a Python implementation based on the comprehensive maple library available at https://sites.math.rutgers.edu/~asbuch/qcalc/.

References:

Features

  • Quantum Pieri Rule Calculations: Efficient computation of quantum Pieri rules applied to Schubert classes.
  • Quantum Giambelli Formulae: Expression of products of Schubert classes in alternative forms using quantum Giambelli formulae.
  • Schubert Class Operations: Perform actions and multiplications on Schubert classes, in both classical and quantum contexts.
  • Dualization and Conversion: Dualize Schubert classes and convert between different Schubert class representations.

Installation

To install the schubertpy module, run the following command:

pip install schubertpy

If you wanna use with sagemath, run the following command:

sage -pip install schubertpy

Usage

Example on Google Colab

Example usage demonstrating the capabilities of schubertpy:

from schubertpy import Grassmannian, OrthogonalGrassmannian, IsotropicGrassmannian

def main():
    # Initialize the Grassmannian object with dimensions
    gr = Grassmannian(2, 5)
    print(gr.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.qgiambelli('S[2,1]*S[2,1]'))
    print(gr.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.giambelli('S[2,1]*S[2,1]'))
    print(gr.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.dualize('S[1]+S[2]'))


    ig = Grassmannian(2, 6)
    print(ig.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.qgiambelli('S[2,1]*S[2,1]'))
    print(ig.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.giambelli('S[2,1]*S[2,1]'))
    print(ig.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 6)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))

    og = Grassmannian(2, 7)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))


if __name__ == "__main__":
    main()

You wanna use with sagemath? You can save above example to main.py and then run:

sage -python main.py

For detailed examples and more operations, refer to the test cases provided within the module's documentation.

Running Tests

To verify the module's functionality, you can run the included tests with either of the following commands:

make test

Or directly with Python:

python3 -m unittest schubertpy/testcases/*.py

Authors

Contributing

We highly encourage contributions to schubertpy. Whether you are looking to expand functionality, enhance performance, or fix bugs, your input is valuable. To get started:

  • Report Issues: If you encounter issues or have suggestions, please report them by creating an issue on our GitHub page.
  • Submit Pull Requests: Feel free to fork the repository and submit pull requests. Whether it's adding new features, optimizing existing code, or correcting bugs, your contributions are welcome.

Please ensure your pull requests are well-documented and include any necessary tests. For more details on contributing, refer to our contribution guidelines on GitHub.

License

schubertpy is open source software (under the GNU General Public License).

Citing

We encourage you to cite our work if you have used our package. See "Cite this repository" on this page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

schubertpy-0.3.26.tar.gz (41.0 kB view details)

Uploaded Source

Built Distribution

schubertpy-0.3.26-py3-none-any.whl (44.1 kB view details)

Uploaded Python 3

File details

Details for the file schubertpy-0.3.26.tar.gz.

File metadata

  • Download URL: schubertpy-0.3.26.tar.gz
  • Upload date:
  • Size: 41.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.26.tar.gz
Algorithm Hash digest
SHA256 867eb419514d85a30e38a7b7b6f304b9a92e6e1198d9f2f2592a707e85de18eb
MD5 3a771d5a937a8f5098cb77fee2377481
BLAKE2b-256 e2b98bf7fc4d02495b083837ee16cef49ac77cc3e21e5474abe8e557d9c880cf

See more details on using hashes here.

File details

Details for the file schubertpy-0.3.26-py3-none-any.whl.

File metadata

  • Download URL: schubertpy-0.3.26-py3-none-any.whl
  • Upload date:
  • Size: 44.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for schubertpy-0.3.26-py3-none-any.whl
Algorithm Hash digest
SHA256 86fc02d0d7be3dcdd9c57d96946b0f147d880e9fa7f8c89d7069c16c21e37410
MD5 870b9695a6ccfb54318555531e0b6c08
BLAKE2b-256 e23f6fe9e0c60442ba6e1a84a5883e5703c61257d7c5f1f100e0ae47b0986e66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page