Skip to main content

The evaluation component of the sci-annot framework

Project description

logoSci-Annot Evaluation Component

PyPI version Build & Test Pipeline

This package was developed as part of my master's thesis and used in the evaluation stage.

Its main purpose is to produce per-page confusion matrices with multiple classes for predictions in the field of Page Object Detection, with inter-object dependencies also supported. To be more precise, it was used to compare predictions in the task of figure, table and caption extraction, but the project can somewhat easily be extended to other object types.

Features

This tool currently supports the following commands:

  • rasterize - Rasterize all pdfs in input folder and additionally produce a summary parquet file called render_summary.parquet in the output folder.
  • split-pdffigures2 - Take original pdffigures2 output and split it into validator-friendly per-page files.
  • benchmark - Evaluate predictions against a ground truth and produce TP, FP, and FN metrics for each page.
  • deepfigures-predict - Use deepfigures to detect elements from each pdf in the input folder.
  • transpile - Take a folder of predictions in one format and output them in another.

Currently, the following prediction formats are supported:

Consider contributing a parser/exporter for your system of choice!

How the Validation Works

The comparison of two sets of bounding boxes is modelled as an optimal assignment problem, with the cost function being the distance between the centres of bounding boxes. The matching algorithm runs inside each class (Figues, Tables, Captions) individually, and uses the Intersection over Union (IoU) to decide if two bounding boxes match. This means that if two bounding boxes look the same, but have different classes, no True Positives will be counted towards either of those classes. This is in contrast to some other validation schemes which award partial points in such cases.

The reference validation runs for all referenced classes at the same time (Figures and Tables in our case), and does not take the bounding boxes' shape or class into account, only if its reference matches the closest bounding box in the corresponding prediction set. For more information on how this works, refer to the thesis which spawned this project.

Installation & Usage

This tool is packaged under the name sci-annot-eval.

You can install it like pip install sci-annot-eval, or conda install sci-annot-eval.

Once installed, call the package from your cli sci-annot-eval COMMAND, or use it as a library in your python project.

Development Setup

If you wish to work on this project locally, you'll need:

  • python3.9+
  • pipenv

To set up the dependencies, just run pipenv install in the project root. From that point on, you can do pipenv shell, which will launch your custom python environment with all of the dependencies installed.

When developing, you can call python3 cli.py in the project root to execute the local version of sci-annot-eval, instead of the installed one.

TODO

  • Fix logging
  • Add more tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

sci_annot_eval-0.0.9-py3-none-any.whl (26.8 kB view details)

Uploaded Python 3

File details

Details for the file sci_annot_eval-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for sci_annot_eval-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 b72289ad270145944a63d9cdc3e64ca4617dc1f47dbc4e6d7ee307ae4186cb8b
MD5 c2ba8e495a29ffff2f764225bb7b242a
BLAKE2b-256 47eb87a35af784349b37a820e3b2d1fd699b0281a5e7b6df7cc187078b891af8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page