Skip to main content

sci palettes for matplotlib/seaborn

Project description

sci palettes for matplotlib/seaborn

Installation

python3 -m pip install sci-palettes

Usage

import seaborn as sns
import matplotlib.pyplot as plt
import sci_palettes


print(sci_palettes.PALETTES.keys())

sci_palettes.register_cmap()          # register all palettes
sci_palettes.register_cmap('aaas')    # register a special palette

# methods for setting palette
plt.set_cmap('aaas')
plt.style.use('aaas')
sns.set_theme(palette='aaas')
sns.set_palette('aaas')

sns.scatterplot(...)

# set palette when plotting
sns.scatterplot(..., palette='aaas')

Full examples in examples

Gallery

展开查看

AAAS

JAMA

NPG

JCO

LANCET

Inspired by the R Package ggsci

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sci-palettes-1.0.1.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

sci_palettes-1.0.1-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file sci-palettes-1.0.1.tar.gz.

File metadata

  • Download URL: sci-palettes-1.0.1.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.3

File hashes

Hashes for sci-palettes-1.0.1.tar.gz
Algorithm Hash digest
SHA256 160fe5f0e2a5998ddfc2e8247cce9636239295aa7b8dc842f467562b92b34b55
MD5 d6256f4b22130a3f4ce5f7d04d670b01
BLAKE2b-256 8afcb793f09d5b9948d30ba5b6320917b624a5c6a91ed90ca02dd299376020b0

See more details on using hashes here.

File details

Details for the file sci_palettes-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: sci_palettes-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.3

File hashes

Hashes for sci_palettes-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fcbbaa12f66dc47bab02bc4d0d4a94cde5b20a144c671d31f32a1e6817684ee4
MD5 b9f5e77f8dddc3c27d49021d1fd0a0b8
BLAKE2b-256 52f6a09279e2835bb3906c7a9fe92a0140d98e26999c5fdae813d49374553b0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page