Skip to main content

Accelerated and Python-only scIB metrics

Project description

scib-metrics

Tests Documentation

Accelerated and Python-only metrics for benchmarking single-cell integration outputs.

This package contains implementations of metrics for evaluating the performance of single-cell omics data integration methods. The implementations of these metrics use jax when possible for jit-compilation and hardware acceleration. All implementations are in Python.

Currently we are porting metrics used in the scIB manuscript (and code). Deviations from the original implementations are documented. However, metric values from this repository should not be compared to the scIB repository.

Getting started

Please refer to the documentation.

Installation

You need to have Python 3.8 or newer installed on your system. If you don't have Python installed, we recommend installing Miniconda.

There are several alternative options to install scib-metrics:

  1. Install the latest release on PyPI:
pip install scib-metrics
  1. Install the latest development version:
pip install git+https://github.com/yoseflab/scib-metrics.git@main

Release notes

See the changelog.

Contact

For questions and help requests, you can reach out in the scverse discourse. If you found a bug, please use the issue tracker.

Citation

t.b.a

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scib_metrics-0.0.4.tar.gz (26.0 kB view hashes)

Uploaded Source

Built Distribution

scib_metrics-0.0.4-py3-none-any.whl (15.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page