Skip to main content

Python package for metrics and scoring : quantifying the quality of predictions

Project description

scientistmetrics : python library for model metrics

About scientistmetrics

scientistmetrics is a Python package for metrics and scoring : quantifying the quality of predictions

Why scientistmetrics?

Measure of association with categoricals variables

scientistmetrics provides the option for computing one of six measures of association between two nominal variables from the data given in a 2d contingency table:

Classification metrics

scientistmetrics provides metrics for classification problem :

  • accuracy score
  • f1 score
  • precision
  • recall
  • etc...

Regression metrics

scientistmetrics provides metrics for regression problem :

  • Rsquared
  • Adjusted Rsquared
  • Mean squared error
  • etc...

Powerset model

scientistmetrics provides a function that gives a set of all subsets model.

Notebook is availabled.

Installation

Dependencies

scientistmetrics requires :

python >=3.10
numpy >=1.26.4
pandas >=2.2.2
scikit-learn >=1.2.2
plotnine >=0.10.1
statsmodels >=0.14.0
scipy >=1.10.1

User installation

You can install scientistmetrics using pip :

pip install scientistmetrics

Author(s)

Duvérier DJIFACK ZEBAZE duverierdjifack@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientistmetrics-0.0.4.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

scientistmetrics-0.0.4-py3-none-any.whl (57.8 kB view details)

Uploaded Python 3

File details

Details for the file scientistmetrics-0.0.4.tar.gz.

File metadata

  • Download URL: scientistmetrics-0.0.4.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientistmetrics-0.0.4.tar.gz
Algorithm Hash digest
SHA256 6fe1957c3e87fa730a6c5db6bb75904f6a73c7156fa64b00ee6f848e5ecd8ec5
MD5 54e2cc28aab4376a9d13be551066f804
BLAKE2b-256 8be4c21c87dd6475a849e6abd3f3394f1ae99114291cd564542a66de081fc687

See more details on using hashes here.

File details

Details for the file scientistmetrics-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for scientistmetrics-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 75d20eb76e11f9d800d5ac0b4c4aae8d209d6c3451887f1c18c1936ba5e50f72
MD5 da519e94a80aed5cd6b061285d9962f4
BLAKE2b-256 69ffeceda4142805bf57b60830a28988d06deb99b9b1cd904a19400f1693ed03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page