Python package for calculating correlation amongst categorical variables
Project description
scientistmetrics
About scientistmetrics
scientistmetrics is a Python
package for calculating correlation amongst categorical variables.
Why scientistmetrics?
The function provides the option for computing one of six measures of association between two nominal variables from the data given in a 2d contingency table:
- Pearson's chi-squared test : https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
- Phi coefficient : https://en.wikipedia.org/wiki/Phi_coefficient
- G-test: https://en.wikipedia.org/wiki/G-test
- Cramer's V : https://en.wikipedia.org/wiki/Cramer's_V
- Tschuprow's T : https://en.wikipedia.org/wiki/Tschuprow's_T
- Pearson contingency coefficient : https://www.statisticshowto.com/contingency-coefficient/
Notebook is availabled.
Installation
Dependencies
scientistmetrics requires :
Python >=3.10
Numpy >=1.23.5
Pandas >=1.5.3
Plotnine >=0.10.1
Scipy >=1.10.1
User installation
You can install scientistmetrics using pip
:
pip install scientistmetrics
Author
Duvérier DJIFACK ZEBAZE
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scientistmetrics-0.0.2.tar.gz
.
File metadata
- Download URL: scientistmetrics-0.0.2.tar.gz
- Upload date:
- Size: 1.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd4fe7f55d105f12b79b6129e8e0d4e1a50391cc597b20f1be43ac0dec862a2f |
|
MD5 | a3a7d2bccd48f468f4bceb2c760fa4f1 |
|
BLAKE2b-256 | 9386637de7665d1d609cad0633c505fd7cf1cb3603833632886e487b13a2fdae |
File details
Details for the file scientistmetrics-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: scientistmetrics-0.0.2-py3-none-any.whl
- Upload date:
- Size: 8.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5fae2576e818339122151e51492b1ee29167c8abbc13ae4f72f5cc9abf6c788 |
|
MD5 | 51ba6eedeeb55d3080bc5b72d22004b7 |
|
BLAKE2b-256 | dcd0fd76c9d0035fa09bd39dc61e708dd9d4134f04e4b8f67a35e5d80dac2bca |