Skip to main content

Python library to easily improve multivariate Exploratory Data Analysis graphs

Project description

GitHub PyPI Downloads Downloads Downloads

scientistshiny : Perform Factorial Analysis from scientisttools with a Shiny for Python Application

1 About scientistshiny

scientistshiny is a Python package to easily improve multivariate Exploratory Data Analysis graphs.

2 Why used scientistshiny?

scientistshiny provided functions for :

  • Principal Component Analysis (PCA) with scientistshiny (PCAshiny)
  • Correspondence Analysis (CA) with scientistshiny (CAshiny)
  • Multiple Correspondence Analysis (MCA) with scientistshiny (MCAshiny)
  • Factor Analysis for Mixed Data (FAMD) with scientistshiny (FAMDshiny)
  • Multiple Factor Analysis (MFA) with scientistshiny (MFAshiny)
  • Multiple Factor Analysis for qualitative variables (MFAQUAL) with scientistshiny (MFAQUALshiny)
  • Multiple Factor Analysis for Mixed Data (MFAMIX) with scientistshiny (MFAMIXshiny)
  • Multiple Factor Analysis for Contingence Tables (MFACT) with scientistshiny (MFACTshiny)

3 Installation

3.1 Dependencies

scientistshiny requires :

scientisttools>=0.1.6
numpy>=1.26.4
matplotlib>=3.8.4
scikit-learn>=1.2.2
pandas>=2.2.3
plotnine>=0.10.1

3.2 User installation

You can install scientisttools using pip :

pip install scientistshiny

4 Example with PCAshiny

# Load dataset and functions
from scientisttools import PCA, load_decathlon2
from scientistshiny import PCAshiny
decathlon = load_decathlon2()

# PCA with scientistshiny
res_shiny = PCAshiny(model = decathlon)
res_shiny.run()

# PCAshiny on a result of a PCA
res_pca = PCA(ind_sup=list(range(23,27)),quanti_sup=[10,11],quali_sup=12)
res_pca.fit(decathlon)
res_shiny = PCAshiny(model = res_pca)
res_shiny.run()

4 Author(s)

Duvérier DJIFACK ZEBAZE (djifacklab@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientistshiny-0.0.2.tar.gz (163.3 kB view details)

Uploaded Source

Built Distribution

scientistshiny-0.0.2-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file scientistshiny-0.0.2.tar.gz.

File metadata

  • Download URL: scientistshiny-0.0.2.tar.gz
  • Upload date:
  • Size: 163.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientistshiny-0.0.2.tar.gz
Algorithm Hash digest
SHA256 3fc89e1fcb975d6d020396b4bf7bd39494f47612983954b27fe4521af26aa6b0
MD5 978d9638c00e68dec2b230f753f2fb43
BLAKE2b-256 29d7f1762bd5022482547630c1751fcc5722021dfa81dcfbcfa8bdde23d8c26e

See more details on using hashes here.

File details

Details for the file scientistshiny-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for scientistshiny-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 68c4c3f244f355fec6266e05f9dfc5bc09d56c1454d4cac38b45df38f965de44
MD5 8ef003a320cf94a4981f91fdccb1b1f8
BLAKE2b-256 2ccc6ad4ebf012d5a91f24ecc8b0e16c21ac8bfed4eaf504064bc794ad3ff0cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page