Python library to easily improve multivariate Exploratory Data Analysis graphs
Project description
scientistshiny : Perform Factorial Analysis from scientisttools
with a Shiny for Python Application
1 About scientistshiny
scientistshiny is a Python package to easily improve multivariate Exploratory Data Analysis graphs.
2 Why used scientistshiny?
scientistshiny provided functions for :
- Principal Component Analysis (PCA) with scientistshiny (PCAshiny)
- Correspondence Analysis (CA) with scientistshiny (CAshiny)
- Multiple Correspondence Analysis (MCA) with scientistshiny (MCAshiny)
- Factor Analysis for Mixed Data (FAMD) with scientistshiny (FAMDshiny)
- Multiple Factor Analysis (MFA) with scientistshiny (MFAshiny)
- Multiple Factor Analysis for qualitative variables (MFAQUAL) with scientistshiny (MFAQUALshiny)
- Multiple Factor Analysis for Mixed Data (MFAMIX) with scientistshiny (MFAMIXshiny)
- Multiple Factor Analysis for Contingence Tables (MFACT) with scientistshiny (MFACTshiny)
3 Installation
3.1 Dependencies
scientistshiny requires :
scientisttools>=0.1.6
numpy>=1.26.4
matplotlib>=3.8.4
scikit-learn>=1.2.2
pandas>=2.2.3
plotnine>=0.10.1
3.2 User installation
You can install scientisttools using pip
:
pip install scientistshiny
4 Example with PCAshiny
# Load dataset and functions
from scientisttools import PCA, load_decathlon2
from scientistshiny import PCAshiny
decathlon = load_decathlon2()
# PCA with scientistshiny
res_shiny = PCAshiny(model = decathlon)
res_shiny.run()
# PCAshiny on a result of a PCA
res_pca = PCA(ind_sup=list(range(23,27)),quanti_sup=[10,11],quali_sup=12)
res_pca.fit(decathlon)
res_shiny = PCAshiny(model = res_pca)
res_shiny.run()
4 Author(s)
Duvérier DJIFACK ZEBAZE (djifacklab@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scientistshiny-0.0.2.tar.gz
(163.3 kB
view details)
Built Distribution
File details
Details for the file scientistshiny-0.0.2.tar.gz
.
File metadata
- Download URL: scientistshiny-0.0.2.tar.gz
- Upload date:
- Size: 163.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3fc89e1fcb975d6d020396b4bf7bd39494f47612983954b27fe4521af26aa6b0 |
|
MD5 | 978d9638c00e68dec2b230f753f2fb43 |
|
BLAKE2b-256 | 29d7f1762bd5022482547630c1751fcc5722021dfa81dcfbcfa8bdde23d8c26e |
File details
Details for the file scientistshiny-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: scientistshiny-0.0.2-py3-none-any.whl
- Upload date:
- Size: 80.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68c4c3f244f355fec6266e05f9dfc5bc09d56c1454d4cac38b45df38f965de44 |
|
MD5 | 8ef003a320cf94a4981f91fdccb1b1f8 |
|
BLAKE2b-256 | 2ccc6ad4ebf012d5a91f24ecc8b0e16c21ac8bfed4eaf504064bc794ad3ff0cd |