Python library for multidimensional analysis
Project description
scientisttools : Python library for multidimensional analysis
About scientisttools
scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis.
Why use scientisttools?
- It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PPCA)
- Weighted Principal Components Analysis (WPCA)
- Expectation-Maximization Principal Components Analysis (EMPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
- It provides a geometrical point of view, a lot of graphical outputs.
- It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
Installation
Dependencies
scientisttools requires
Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >= 1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3
User installation
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
Author
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scientisttools-0.0.4.tar.gz
(7.3 MB
view details)
Built Distribution
File details
Details for the file scientisttools-0.0.4.tar.gz
.
File metadata
- Download URL: scientisttools-0.0.4.tar.gz
- Upload date:
- Size: 7.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43a7512d392d08778fbaa89c1ce866762ec7b7da2b7400e34f833bc8b43793ad |
|
MD5 | e139cf71053224270396b58486f95b2a |
|
BLAKE2b-256 | 655ecd6c403e85c0473effc378b6701bf54c232f9d89cf069f489c60b5bb096a |
File details
Details for the file scientisttools-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: scientisttools-0.0.4-py3-none-any.whl
- Upload date:
- Size: 57.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4f588fa3df9e2f0c48111dc92472fcac50643dbfb61fa6ee1aec0ff07351312 |
|
MD5 | d3d9989f0475afe58ebebc13976ed624 |
|
BLAKE2b-256 | e79006343ec0c8e75729ddbecb5a56b320ff3e0b83e5d540db0edc007b93db88 |