Python library for multidimensional analysis
Project description
scientisttools : Python library for multidimensional analysis
About scientisttools
scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis.
Why use scientisttools?
- It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PPCA)
- Weighted Principal Components Analysis (WPCA)
- Expectation-Maximization Principal Components Analysis (EMPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
- It provides a geometrical point of view, a lot of graphical outputs.
- It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
Installation
Dependencies
scientisttools requires
Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >= 1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3
User installation
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
Author
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scientisttools-0.0.6.tar.gz
(7.9 MB
view details)
Built Distribution
File details
Details for the file scientisttools-0.0.6.tar.gz
.
File metadata
- Download URL: scientisttools-0.0.6.tar.gz
- Upload date:
- Size: 7.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebbf9882ddde62637cb192ed4e54dc0c3a6ad902b69fbae83c85b2afcc5c43b1 |
|
MD5 | f032d8dcfdf207d912a996c39640d99c |
|
BLAKE2b-256 | 0150157eaf1a74257049bd83f016875220a73066274912034749a1e13cdaaf7b |
File details
Details for the file scientisttools-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: scientisttools-0.0.6-py3-none-any.whl
- Upload date:
- Size: 89.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c5815a744ab69012968c8f86ef07dda99c6ddf4e85988a9a373e494f851a281e |
|
MD5 | 484dc397a0d134d898a74e563e87566a |
|
BLAKE2b-256 | 87a3f2155e905763b82d509e22109cc45a63e25ae6d9cd9d9015ee553b909f44 |