Skip to main content

Python library for multidimensional analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis.

Why use scientisttools?

  • It performs classical principal component methods :
    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PPCA)
    • Weighted Principal Components Analysis (WPCA)
    • Expectation-Maximization Principal Components Analysis (EMPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
  • It provides a geometrical point of view, a lot of graphical outputs.
  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

Installation

Dependencies

scientisttools requires

Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >=  1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.0.6.tar.gz (7.9 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.0.6-py3-none-any.whl (89.3 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.0.6.tar.gz.

File metadata

  • Download URL: scientisttools-0.0.6.tar.gz
  • Upload date:
  • Size: 7.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ebbf9882ddde62637cb192ed4e54dc0c3a6ad902b69fbae83c85b2afcc5c43b1
MD5 f032d8dcfdf207d912a996c39640d99c
BLAKE2b-256 0150157eaf1a74257049bd83f016875220a73066274912034749a1e13cdaaf7b

See more details on using hashes here.

File details

Details for the file scientisttools-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c5815a744ab69012968c8f86ef07dda99c6ddf4e85988a9a373e494f851a281e
MD5 484dc397a0d134d898a74e563e87566a
BLAKE2b-256 87a3f2155e905763b82d509e22109cc45a63e25ae6d9cd9d9015ee553b909f44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page