Skip to main content

Python library for multidimensional analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis.

Why use scientisttools?

  • It performs classical principal component methods :
    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PPCA)
    • Weighted Principal Components Analysis (WPCA)
    • Expectation-Maximization Principal Components Analysis (EMPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
  • It provides a geometrical point of view, a lot of graphical outputs.
  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs some algorithms such as clustering analysis and discriminant analysis.

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
  • Discriminant Analysis
    • Canonical Discriminant Analysis (CANDISC)
    • Linear Discriminant Analysis (LDA)
    • Discriminant with qualitatives variables (DISQUAL)
    • Discriminant Correspondence Analysis (DISCA)
    • Discriminant with mixed data (DISMIX)
    • Stepwise Discriminant Analysis (STEPDISC) (only backward elimination is available).

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >=  1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.0.7.tar.gz (8.5 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.0.7-py3-none-any.whl (89.7 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.0.7.tar.gz.

File metadata

  • Download URL: scientisttools-0.0.7.tar.gz
  • Upload date:
  • Size: 8.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.0.7.tar.gz
Algorithm Hash digest
SHA256 dd4cca6005213125cc643a8e13bfa21d71d1b769f84fb6ecdb3b435b906b7f04
MD5 0d01497cae13ccb3d680cfaa75bd181f
BLAKE2b-256 5fd5b299e6beda136159889757f25bf723d3af61160cea6ad8611bbea30e6238

See more details on using hashes here.

File details

Details for the file scientisttools-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 edbc05b017cfa51f76d2354ae2c051e8db7b6a3e27559266a1a92ae6287d9fa5
MD5 b4c58232193cdc19e657286eb65afadf
BLAKE2b-256 17b9ca6fac31168a9916bf2bde81ab1890e9ec8eae51d0a31c45c6c24279e090

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page