Python library for multidimensional analysis
Project description
scientisttools : Python library for multidimensional analysis
About scientisttools
scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis.
Why use scientisttools?
- It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PPCA)
- Weighted Principal Components Analysis (WPCA)
- Expectation-Maximization Principal Components Analysis (EMPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
- It provides a geometrical point of view, a lot of graphical outputs.
- It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
scientisttools
also performs some algorithms such as clustering analysis
and discriminant analysis
.
- Clustering analysis:
- Hierarchical Clustering on Principal Components (HCPC)
- Discriminant Analysis
- Canonical Discriminant Analysis (CANDISC)
- Linear Discriminant Analysis (LDA)
- Discriminant with qualitatives variables (DISQUAL)
- Discriminant Correspondence Analysis (DISCA)
- Discriminant with mixed data (DISMIX)
- Stepwise Discriminant Analysis (STEPDISC) (only
backward
elimination is available).
Notebooks are availabled.
Installation
Dependencies
scientisttools requires
Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >= 1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3
User installation
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
Author
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scientisttools-0.0.7.tar.gz
(8.5 MB
view details)
Built Distribution
File details
Details for the file scientisttools-0.0.7.tar.gz
.
File metadata
- Download URL: scientisttools-0.0.7.tar.gz
- Upload date:
- Size: 8.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd4cca6005213125cc643a8e13bfa21d71d1b769f84fb6ecdb3b435b906b7f04 |
|
MD5 | 0d01497cae13ccb3d680cfaa75bd181f |
|
BLAKE2b-256 | 5fd5b299e6beda136159889757f25bf723d3af61160cea6ad8611bbea30e6238 |
File details
Details for the file scientisttools-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: scientisttools-0.0.7-py3-none-any.whl
- Upload date:
- Size: 89.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edbc05b017cfa51f76d2354ae2c051e8db7b6a3e27559266a1a92ae6287d9fa5 |
|
MD5 | b4c58232193cdc19e657286eb65afadf |
|
BLAKE2b-256 | 17b9ca6fac31168a9916bf2bde81ab1890e9ec8eae51d0a31c45c6c24279e090 |