Skip to main content

Python library for multidimensional analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis.

Why use scientisttools?

  • It performs classical principal component methods :
    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PPCA)
    • Weighted Principal Components Analysis (WPCA)
    • Expectation-Maximization Principal Components Analysis (EMPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMDSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
    • Multiple Factor Analysis (MFA)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
  • It provides a geometrical point of view, a lot of graphical outputs.
  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs some algorithms such as clustering analysis and discriminant analysis.

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
    • Variables Hierarchical Clustering Analysis (VARHCA)
    • Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
    • Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
  • Discriminant Analysis
    • Canonical Discriminant Analysis (CANDISC)
    • Linear Discriminant Analysis (LDA)
    • Discriminant with qualitatives variables (DISQUAL)
    • Discriminant Correspondence Analysis (DISCA)
    • Discriminant with mixed data (DISMIX)
    • Stepwise Discriminant Analysis (STEPDISC) (only backward elimination is available).

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >=  1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.0.8.tar.gz (9.5 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.0.8-py3-none-any.whl (95.1 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.0.8.tar.gz.

File metadata

  • Download URL: scientisttools-0.0.8.tar.gz
  • Upload date:
  • Size: 9.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.0.8.tar.gz
Algorithm Hash digest
SHA256 1f3ed86f68b83a66d34c3e7805c3b902a51fdbefff8494baf088c301a3bd357e
MD5 7a0547f1847f078fc59ce211e2de4274
BLAKE2b-256 54961b850d03ff92bcab3bb619b9865094931af5285f0858a7de8a6bf4236685

See more details on using hashes here.

File details

Details for the file scientisttools-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 ca9c0de44b6ace81f626a32c4f33ad63ae8dc3e2a9c79f1cc6c82f0dbc8041ee
MD5 8133a6d8cf13a7704af4eb84f68bf9e5
BLAKE2b-256 88af9d4189daacf77c4ceb90a1aba930d38ccf4b5b7f453db7ca4f806d3925b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page