Skip to main content

Python library for multidimensional analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis.

Why use scientisttools?

  • It performs classical principal component methods :
    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PPCA)
    • Weighted Principal Components Analysis (WPCA)
    • Expectation-Maximization Principal Components Analysis (EMPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMDSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
    • Multiple Factor Analysis (MFA)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
  • It provides a geometrical point of view, a lot of graphical outputs.
  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs some algorithms such as clustering analysis and discriminant analysis.

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
    • Variables Hierarchical Clustering Analysis (VARHCA)
    • Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
    • Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
  • Discriminant Analysis
    • Canonical Discriminant Analysis (CANDISC)
    • Linear Discriminant Analysis (LDA)
    • Discriminant with qualitatives variables (DISQUAL)
    • Discriminant Correspondence Analysis (DISCA)
    • Discriminant with mixed data (DISMIX)
    • Stepwise Discriminant Analysis (STEPDISC) (only backward elimination is available).

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

numpy>=1.23.5
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=1.5.3
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2
factor_analyzer>=0.5.0
networkx>=3.2.1
more_itertools>=10.1.0

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.1.0.tar.gz (18.7 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.1.0-py3-none-any.whl (217.9 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.1.0.tar.gz.

File metadata

  • Download URL: scientisttools-0.1.0.tar.gz
  • Upload date:
  • Size: 18.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.1.0.tar.gz
Algorithm Hash digest
SHA256 87070fe313cec6a37a07db028a05f3e1307732d928936ccc110f78f6f3764d08
MD5 0f8bf3653306175603a9071daacefa4f
BLAKE2b-256 debd022557ad1c4e199a4b975fcec64ba91221cbed742e7a444de5e6961e077b

See more details on using hashes here.

File details

Details for the file scientisttools-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6830a104a31deb1f1bc1ac126d0efc6a1da8663010d8a7d3799d1f29baec3251
MD5 d34b86d8ca9d7eec36b81b236cb7504a
BLAKE2b-256 bc2371c1fcaed9f7dfb03c79f55bac5929e7e274fe908173846e1b5f0f499860

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page