Python library for multidimensional analysis
Project description
scientisttools : Python library for multidimensional analysis
About scientisttools
scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis.
Why use scientisttools?
- It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PPCA)
- Weighted Principal Components Analysis (WPCA)
- Expectation-Maximization Principal Components Analysis (EMPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMDSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- Multiple Factor Analysis (MFA)
- In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
- It provides a geometrical point of view, a lot of graphical outputs.
- It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
scientisttools
also performs some algorithms such as clustering analysis
and discriminant analysis
.
- Clustering analysis:
- Hierarchical Clustering on Principal Components (HCPC)
- Variables Hierarchical Clustering Analysis (VARHCA)
- Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
- Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
- Discriminant Analysis
- Canonical Discriminant Analysis (CANDISC)
- Linear Discriminant Analysis (LDA)
- Discriminant with qualitatives variables (DISQUAL)
- Discriminant Correspondence Analysis (DISCA)
- Discriminant with mixed data (DISMIX)
- Stepwise Discriminant Analysis (STEPDISC) (only
backward
elimination is available).
Notebooks are availabled.
Installation
Dependencies
scientisttools requires
numpy>=1.23.5
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=1.5.3
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2
factor_analyzer>=0.5.0
networkx>=3.2.1
more_itertools>=10.1.0
User installation
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
Author
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scientisttools-0.1.0.tar.gz
(18.7 MB
view details)
Built Distribution
File details
Details for the file scientisttools-0.1.0.tar.gz
.
File metadata
- Download URL: scientisttools-0.1.0.tar.gz
- Upload date:
- Size: 18.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87070fe313cec6a37a07db028a05f3e1307732d928936ccc110f78f6f3764d08 |
|
MD5 | 0f8bf3653306175603a9071daacefa4f |
|
BLAKE2b-256 | debd022557ad1c4e199a4b975fcec64ba91221cbed742e7a444de5e6961e077b |
File details
Details for the file scientisttools-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: scientisttools-0.1.0-py3-none-any.whl
- Upload date:
- Size: 217.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6830a104a31deb1f1bc1ac126d0efc6a1da8663010d8a7d3799d1f29baec3251 |
|
MD5 | d34b86d8ca9d7eec36b81b236cb7504a |
|
BLAKE2b-256 | bc2371c1fcaed9f7dfb03c79f55bac5929e7e274fe908173846e1b5f0f499860 |