Python library for multidimensional analysis, classification - clustering analysis
Project description
scientisttools : Python library for multidimensional analysis
About scientisttools
scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis, clustering analysis and discriminant analysis.
Why use scientisttools?
-
It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PartialPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMDSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- Multiple Factor Analysis (MFA)
- Multiple Factor Analysis for qualitatives/categoricals variables (MFAQUAL)
- Multiple Factor Analysis of Mixed Data (MFAMIX)
- Multiple Factor Analysis of Contingence Tables (MFACT)
-
In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
-
It provides a geometrical point of view, a lot of graphical outputs.
-
It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
scientisttools
also performs clustering analysis
- Clustering analysis:
- Hierarchical Clustering on Principal Components (HCPC)
- Variables Hierarchical Clustering Analysis (VARHCA)
- Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
- Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
Notebooks are availabled.
Installation
Dependencies
scientisttools requires
numpy>=1.26.2
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=1.5.3
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2
User installation
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
Author
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scientisttools-0.1.4.tar.gz
.
File metadata
- Download URL: scientisttools-0.1.4.tar.gz
- Upload date:
- Size: 23.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39506e4ad8c22011170a603a539e2752b168b9e7a429afee6566ddcbca220d70 |
|
MD5 | 5c2b331ac02c324394ceb77d92bfc874 |
|
BLAKE2b-256 | 1cad7812e3fcf50427c82dc2f66ffe482531e4175eb5c5af942b44caa44158c1 |
File details
Details for the file scientisttools-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: scientisttools-0.1.4-py3-none-any.whl
- Upload date:
- Size: 300.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25fa38531db1f9dd02a791db6ad84da9e3b8e84b6a77ad4df89af99b3fa1fd76 |
|
MD5 | 5ad1377584f542bbeed0fd7dd5f4a0de |
|
BLAKE2b-256 | 5a693d610aad9656f5a0c6cf94777fc3af2a2162528e66339513d7ae4c84f1ca |