Skip to main content

Python library for multidimensional analysis, classification - clustering analysis

Project description

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis, clustering analysis and discriminant analysis.

Why use scientisttools?

  • It performs classical principal component methods :

    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PartialPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMDSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
    • Multiple Factor Analysis (MFA)
    • Multiple Factor Analysis for qualitatives/categoricals variables (MFAQUAL)
    • Multiple Factor Analysis of Mixed Data (MFAMIX)
    • Multiple Factor Analysis of Contingence Tables (MFACT)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.

  • It provides a geometrical point of view, a lot of graphical outputs.

  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs clustering analysis

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
    • Variables Hierarchical Clustering Analysis (VARHCA)
    • Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
    • Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

numpy>=1.26.2
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=1.5.3
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scientisttools-0.1.4.tar.gz (23.1 MB view details)

Uploaded Source

Built Distribution

scientisttools-0.1.4-py3-none-any.whl (300.0 kB view details)

Uploaded Python 3

File details

Details for the file scientisttools-0.1.4.tar.gz.

File metadata

  • Download URL: scientisttools-0.1.4.tar.gz
  • Upload date:
  • Size: 23.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for scientisttools-0.1.4.tar.gz
Algorithm Hash digest
SHA256 39506e4ad8c22011170a603a539e2752b168b9e7a429afee6566ddcbca220d70
MD5 5c2b331ac02c324394ceb77d92bfc874
BLAKE2b-256 1cad7812e3fcf50427c82dc2f66ffe482531e4175eb5c5af942b44caa44158c1

See more details on using hashes here.

File details

Details for the file scientisttools-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for scientisttools-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 25fa38531db1f9dd02a791db6ad84da9e3b8e84b6a77ad4df89af99b3fa1fd76
MD5 5ad1377584f542bbeed0fd7dd5f4a0de
BLAKE2b-256 5a693d610aad9656f5a0c6cf94777fc3af2a2162528e66339513d7ae4c84f1ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page