Skip to main content

Scikit-Criteria is a collections of algorithms, methods and techniques for multiple-criteria decision analysis.

Project description

Scikit-Criteria

image

Multiple-criteria decision analysis

QuatroPe Gihub Actions CI Documentation Status PyPI PyPI - Downloads Conda Forge Conda License Python 3.8+

Scikit-Criteria is a collection of Multiple-criteria decision analysis (MCDA) methods integrated into scientific python stack. Is Open source and commercially usable.

Help & discussion mailing list

Our Google Groups mailing list is here.

You can contact me at: jbcabral@unc.edu.ar (if you have a support question, try the mailing list first)

Code Repository & Issues

https://github.com/quatrope/scikit-criteria

License

Scikit-Criteria is under The 3-Clause BSD License

This license allows unlimited redistribution for any purpose as long as its copyright notices and the license's disclaimers of warranty are maintained.

Citation

If you are using Scikit-Criteria in your research, please cite:

If you use scikit-criteria in a scientific publication, we would appreciate citations to the following paper:

Cabral, Juan B., Nadia Ayelen Luczywo, and José Luis Zanazzi 2016 Scikit-Criteria: Colección de Métodos de Análisis Multi-Criterio Integrado Al Stack Científico de Python. In XLV Jornadas Argentinas de Informática E Investigación Operativa (45JAIIO)-XIV Simposio Argentino de Investigación Operativa (SIO) (Buenos Aires, 2016) Pp. 59-66. http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf.

Bibtex entry:

   @inproceedings{scikit-criteria,
        author={
            Juan B Cabral and Nadia Ayelen Luczywo and Jos\'{e} Luis Zanazzi},
        title={
            Scikit-Criteria: Colecci\'{o}n de m\'{e}todos de an\'{a}lisis
            multi-criterio integrado al stack cient\'{i}fico de {P}ython},
        booktitle = {
            XLV Jornadas Argentinas de Inform{\'a}tica
            e Investigaci{\'o}n Operativa (45JAIIO)-
            XIV Simposio Argentino de Investigaci\'{o}n Operativa (SIO)
            (Buenos Aires, 2016)},
        year={2016},
        pages = {59--66},
        url={http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf}
    }

Full Publication: http://sedici.unlp.edu.ar/handle/10915/58577

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-criteria-0.8.7.tar.gz (83.2 kB view details)

Uploaded Source

Built Distribution

scikit_criteria-0.8.7-py3-none-any.whl (127.6 kB view details)

Uploaded Python 3

File details

Details for the file scikit-criteria-0.8.7.tar.gz.

File metadata

  • Download URL: scikit-criteria-0.8.7.tar.gz
  • Upload date:
  • Size: 83.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for scikit-criteria-0.8.7.tar.gz
Algorithm Hash digest
SHA256 2c55c2fca23e61a7ded6d17470224e73d6c590b57da98b9d1e9f4411a9873221
MD5 0c2ab6899102f9ab58b5a1aafb05394d
BLAKE2b-256 9df2703d7d8301b4143addbd1758ceda64c5547d38b9ebefed53918d8d0f7e6e

See more details on using hashes here.

File details

Details for the file scikit_criteria-0.8.7-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_criteria-0.8.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1633452e034793612dfe20201a7c3fa634f383595cb149a2c8a32621ddb61b20
MD5 3d257f4ecf1c5da68aa47f357ed6b58f
BLAKE2b-256 abbeccfcfcb0a35c5dc427874297ebfb6c02eb960dc59e898518502be2fba4e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page