Skip to main content

A set of python modules for cyclist using powermeters.

Project description

https://travis-ci.org/scikit-cycling/scikit-cycling.svg?branch=master https://ci.appveyor.com/api/projects/status/f2mvtb9y1mcy99vg?svg=true Documentation Status https://codecov.io/gh/scikit-cycling/scikit-cycling/branch/master/graph/badge.svg https://badges.gitter.im/Join%20Chat.svg

Installation

Dependencies

Scikit-cycling requires:

  • scipy

  • numpy

  • pandas

  • six

  • fit-parse

  • joblib

  • scikit-learn

Installation

scikit-cycling is currently available on the PyPi’s reporitories and you can install it via pip:

pip install -U scikit-cycling

The package is release also in conda-forge:

conda install -c conda-forge scikit-cycling

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies:

git clone https://github.com/scikit-cycling/scikit-cycling.git
cd scikit-cycling
pip install .

Or install using pip and GitHub:

pip install -U git+https://github.com/scikit-cycling/scikit-cycling.git

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-cycling-0.1.3.tar.gz (937.5 kB view details)

Uploaded Source

Built Distributions

scikit_cycling-0.1.3-cp36-cp36m-win_amd64.whl (899.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

scikit_cycling-0.1.3-cp36-cp36m-win32.whl (882.7 kB view details)

Uploaded CPython 3.6m Windows x86

scikit_cycling-0.1.3-cp36-cp36m-manylinux1_x86_64.whl (940.9 kB view details)

Uploaded CPython 3.6m

scikit_cycling-0.1.3-cp36-cp36m-manylinux1_i686.whl (928.0 kB view details)

Uploaded CPython 3.6m

scikit_cycling-0.1.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_cycling-0.1.3-cp35-cp35m-win_amd64.whl (899.0 kB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_cycling-0.1.3-cp35-cp35m-win32.whl (881.4 kB view details)

Uploaded CPython 3.5m Windows x86

scikit_cycling-0.1.3-cp35-cp35m-manylinux1_x86_64.whl (940.0 kB view details)

Uploaded CPython 3.5m

scikit_cycling-0.1.3-cp35-cp35m-manylinux1_i686.whl (927.0 kB view details)

Uploaded CPython 3.5m

scikit_cycling-0.1.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_x86_64.whl (937.7 kB view details)

Uploaded CPython 2.7mu

scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_i686.whl (926.8 kB view details)

Uploaded CPython 2.7mu

scikit_cycling-0.1.3-cp27-cp27m-win_amd64.whl (899.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_cycling-0.1.3-cp27-cp27m-win32.whl (882.9 kB view details)

Uploaded CPython 2.7m Windows x86

scikit_cycling-0.1.3-cp27-cp27m-manylinux1_x86_64.whl (939.7 kB view details)

Uploaded CPython 2.7m

scikit_cycling-0.1.3-cp27-cp27m-manylinux1_i686.whl (927.0 kB view details)

Uploaded CPython 2.7m

scikit_cycling-0.1.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scikit-cycling-0.1.3.tar.gz.

File metadata

File hashes

Hashes for scikit-cycling-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b392019256c1cbe8ab4f5387cc4c91ee05f27e15663be9eef37d47ca03c1ea2f
MD5 210aba526aa061c41d7f2e163cd815c7
BLAKE2b-256 e3b577b8118297221e5fd2a4fb9301228d88da1802d1bb29b2d8c3bdade49ce9

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8fe30077ab36b880eecd7d7ffc98031761e5b4c027ee25e5d9d72cce9036746f
MD5 bd4abfe904b39c4517317a1c3f686e69
BLAKE2b-256 558912fae66709e2fbcb5945053ec45a8677193b00a1af87983ceaedabf75c21

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 bafc31d16f45eb868e4156efc8ad8780a0302223ea0b504e15cf4795125d47f8
MD5 f1262e473032963dce5340a41ef7822b
BLAKE2b-256 2510bd31c2c524ecac1b85c34e60904ec13e00e05c8a42b298e75521e1fe88bd

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4a56a693af794ea6ee3618a5dd28621fb721308632bf9ca6bc45f9509ac4d2dc
MD5 8095951a1243e8d9e8a66c510335fbd0
BLAKE2b-256 739f4ddb5d74057ce113fda99ef41124024764a54731dbfcb99e5035406fd999

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 95745834742fd2241ab345d953a4031f2aa770f13c6c7467dab2b0a399d0fdb4
MD5 25506f7ba7915462ab80f8eaf005ea9e
BLAKE2b-256 049883e4e0744855b480ca212cdc937e8f56f226ca6d9261b85855b792e938d5

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 367a4d7a2fd0e0b71bf2fd08124c524ed507d6c07b0321866c67f8a7c2102941
MD5 db1670d92d444c052251182500a2dd23
BLAKE2b-256 d8d4a0ad53b1c25bba4a178c4483effc239bb935ad2201925fc64db9f0221ad6

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 8ec1a299b1eec8ff88770044b7361259cef51eb3a44966c497ca1c4234ba7a13
MD5 67ed222b1e33a188281ca0aa3994d666
BLAKE2b-256 c2357bc026569e8390e987f119ce6289e597ec8102957d1c0b811e1964f09562

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 7cee2a9bdb6a9ad0bb7c72280a8fbd8e45c13f8909bcb91bfbfeb9016fa24af3
MD5 ab2dbaabfc4ea65d30cab500a0121560
BLAKE2b-256 3c179e90f873bc530dec74a713f1cc28854a9defaad72b792853c152f34ff6f8

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 438b1a32f6854874ec1aa4a3526ac57fa344c4dae9680a4e0a9313455fa70d63
MD5 20af275f4df3e91ab7e0b63a969312f6
BLAKE2b-256 bc29f0672790f75bb09fecea6c4c35d7ab995b82e59842851c5c105ff56664c0

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9746e597784a98f9fe541209a5729adae97f780b12f2258c988ea05c8a865e09
MD5 2b2ab31f65758defb877b9e4b7d484e9
BLAKE2b-256 add2d0ed02afeb11a2860a6d499c4f78996304ad1646cd547dc74ea35a07f255

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 37e65e6089257fe61962dc0027251fc161d8343fbc70b4238b6ef7b791761dfe
MD5 326a93ff9ef3086b19364a976dbcb489
BLAKE2b-256 a1aec47662f94d852d1411e01ece340e394b027076361f2c99fcca0e1835c3e4

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 76054fb36907b499b8d5c03bda503186bd4a9274918d481bdd366cec31c07c35
MD5 91ff678fcf3f5470801ac7856e1979ee
BLAKE2b-256 948ada53ff441904003bad372b5f4877db184d962e28dfcce90ec36236d9b820

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6b376d6f3db02d4c179a7088691c2a0ea2893537eb100f64af102d9692c5dcce
MD5 4c493f37bd31813c455457d43f0f29d2
BLAKE2b-256 630fc1021c33fd5e932232887e1bd5ffc3576a21983d72a6833314f6075a9b44

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 8cde092227059d12f614319a6143e6fc22083405204697311abaae4e20827bc8
MD5 72c198fb22a8f2586d409763387ad3b5
BLAKE2b-256 aa5265a6ef00be1e973dbaa9d618cd1acdd1a4b94cfec4b1fabecd7ce0828e37

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2a7dc45c795c10584f893596e78ab2928a43e4084e7dca073df441405a8699ad
MD5 396e1ab857a68b73e0737da4233eef04
BLAKE2b-256 be9e4a1c6735927a9452676272abf02a24f5fac6f5371e8c3c6cd5aa867e4955

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3a4b2fe4493e78454deb80021fae832c1b8efef77a2e95959ee8aac32a48cc0f
MD5 5384dc0ef248af6e79ef6a09bacdeba0
BLAKE2b-256 214f38b80071e02e6523e07442a9f90cc1955576b4614e3efda3c31af72384ef

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ac53fcaf8faf9857bcdeb4c0ba5d8cf966f20599beee2c57751f6a418b89aaab
MD5 658886fb3e9a7b2f08c41bf6dc69ae30
BLAKE2b-256 9224f5d9b12f322c886118308613042c8ac3324a3a3bbdc1452533da250123bb

See more details on using hashes here.

File details

Details for the file scikit_cycling-0.1.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_cycling-0.1.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3424591e5b80c2c391417efa17c62f05fd90919a3e932a8a3c6fb2719a34cae5
MD5 8db0e1b555757fe8d161bfc7aca0dfc0
BLAKE2b-256 92a0282459a0e7e1fb1ecc054a6b2627e74081e958b1d7db59763406bc5f615e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page