Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.17.1.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.17.1-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.1-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.17.1-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.1-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.17.1-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.1-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.17.1-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.1-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.17.1.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1.tar.gz
Algorithm Hash digest
SHA256 975a20e76e4505f38269a81cbf805a249dead08158ad6860f6e0990a6ddd7673
MD5 1cd17578e43c501d29535b7692a41b3e
BLAKE2b-256 6f97d5a3ecd2d079f0f0b08a6323f1ececdfb6d3ad620e87a84fb95e3ced2031

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1bc68ef81b4ec6e62d205214563a8711647da1531090570b1f56143421c522de
MD5 9ec3bfd839e19a2151c60ba70c0e182f
BLAKE2b-256 a30ae3ab393eb0391cdb9c0ae2ac25c8b638381b752cf85948d8c5f71c2fffa8

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f9c617c719a27f13dd930ba6d65651bfe00f37eefb4aa8084eca9df45c6f47c
MD5 8882ae3f9ed12b49276599ea445e6036
BLAKE2b-256 7b6f6373527a6900268e95d71f94adeba80e32f64a6f229251e3731231fdb4bd

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a98c6364832582ecba3a61305b0d674fc6bc97e96a7873a33c9f31d0dc1814a
MD5 40b6d469668fadb74b33f6791c65572c
BLAKE2b-256 c6a243b5204d3a636bf798d2e24e6169affbe081eaf0db0409243cdc466e2dbb

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a7838597bece0e1857c74f7fa13c7977df5474928fe938a161fb2b8e9a2069ac
MD5 ae3e15062b0ccaa32daa2979ef556a5e
BLAKE2b-256 aa31b3d793f83d30cf414c2dcc2abf94a6ccc2b875b424858ad1976b9ffc1a7d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b164214f378ded07fb253a8bcbe9261869dc2c2b9df01ae51bd47602aa5bf14b
MD5 f59d7fdb4483f280d4d4c64d816bde7c
BLAKE2b-256 2a47b1a8a64cef6b6c67e83cb3071a5e2ce3b9b15a9d35978563cd4ec9c0c926

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5021657975ab0f03679b8843d7ce865629ad1b3ca9a1031a7e3289c289a5f487
MD5 76d834e64f06d7d4cba4a54940c82cbc
BLAKE2b-256 8dcc83d286ca24dd7011bf61857642a29c75bf8719d21746c74c90dc51a5f6e4

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 03a0ac9f4d3e810ffd4c4ee1d18164bcd9aad3e2d38a71b372ebfefa6376fa02
MD5 0974a8bea366453f5b76a5433c3bf4bc
BLAKE2b-256 5a5f9969f0336d0b12c52a25fe7693b075c16370a8784a8959b24366d50869bf

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d63e53757796f833fdd011125f9ec83b3a1f76d85d25a071ff4ab64f13794767
MD5 51cc26856d68dcd0cee140075cd07cb0
BLAKE2b-256 7b2fce07a4d8ead444cbc5db4e802a8b122c18fd001b215925b882a506ff1279

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14288b5f33ea808cb5c7a5cde6d96752b7711b7387445014dd3716b24aab4740
MD5 0a66c6248ab587a1687f77c17c2a8ec2
BLAKE2b-256 c1f258e988f19aa09ec605138650c35a5913efd67e7b0c393d22e2130a806a26

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 691263ad92ccd7f4b70a7e379feedcf80249b750bfd44f0703faac307bd48503
MD5 c74d2d41905fd5ba7de12d2411cbe4e6
BLAKE2b-256 2f00f5806c7631f0a000ea6eb6fa3cc84ceda5b348e1723e6ac6bbc19a8c6218

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 963f8b39f2f2e679ca14c021bd1d6e39324e2da8f443ff16f52c1d21be42002f
MD5 741028acb79ab3f25c89bf53bbfeb80c
BLAKE2b-256 8c5ac9d23eb09f0d44a0dfdd78425adc55bc29f29d6b252c1fb265ca6d4bd964

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6fb06ebbfed39485df5bcfe6944037cf8d76e92e78374355487383c9bacad0e0
MD5 3302d5931d3a875da6c458f5248d3117
BLAKE2b-256 56fc0f495efa480d2eb67656cc718116ac3badecb6726ec059d50f6edb1629b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page