Skip to main content

A package for Computer-Aided Discovery

Project description

Scikit Discovery

  • Explore scientific data with a set of tools for human-guided or automated discovery
  • Design & configure data processing pipelines
  • Define the parameter ranges for your algorithms, available algorithmic choices, and the framework will generate pipeline instances for you
  • Use automatically perturbed data processing pipelines to create different data products.
  • Easy to use with scikit-dataaccess for integration of a variety of scientific data sets

Scikit Discovery Overview

Install

pip install scikit-discovery

Documentation

See https://github.com/MITHaystack/scikit-discovery/tree/master/skdiscovery/docs

Contributors

Project lead: Victor Pankratius (MIT)
Contributors: Cody M. Rude, Justin D. Li, David M. Blair, Michael G. Gowanlock, Evan Wojciechowski, Victor Pankratius

Acknowledgements

We acknowledge support from NASA AIST14-NNX15AG84G, NASA AIST16-80NSSC17K0125, NSF ACI-1442997, NSF AGS-1343967, and Amazon AWS computing access support.

Examples

Example code with complete science case studies are available as Jupyter Notebooks at:

/MITHaystack/science-casestudies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-discovery-0.9.18.tar.gz (1.4 MB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page