A package for Computer-Aided Discovery
Project description
- Explore scientific data with a set of tools for human-guided or automated discovery
- Design & configure data processing pipelines
- Define the parameter ranges for your algorithms, available algorithmic choices, and the framework will generate pipeline instances for you
- Use automatically perturbed data processing pipelines to create different data products.
- Easy to use with scikit-dataaccess for integration of a variety of scientific data sets
Install
pip install scikit-discovery
Documentation
See https://github.com/MITHaystack/scikit-discovery/tree/master/skdiscovery/docs
Contributors
Project lead: Victor Pankratius (MIT)
Contributors: Cody M. Rude, Justin D. Li, David M. Blair, Michael G. Gowanlock, Evan Wojciechowski, Victor Pankratius
Acknowledgements
We acknowledge support from NASA AIST14-NNX15AG84G, NASA AIST16-80NSSC17K0125, NSF ACI-1442997, NSF AGS-1343967, and Amazon AWS computing access support.
Examples
Example code with complete science case studies are available as Jupyter Notebooks at:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file scikit-discovery-0.9.18.tar.gz
.
File metadata
- Download URL: scikit-discovery-0.9.18.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b93a4499a42f9c1c98fc4e1f25cfe724972fab861bc051589ab50efd7c36dc96 |
|
MD5 | 714bf32a27a9044aef029f2f2a6a6747 |
|
BLAKE2b-256 | 83c6331394e1f1da7926a4c9b7a017267f042cc052dcf55d459a367c525843c3 |