Skip to main content

Machine learning with a reject option

Project description

PyPi Downloads License CodeFactor Python package workflow PythonVersion Black linting: pylint Twitter Twitter Follow

scikit-fallback is a scikit-learn-compatible Python package for machine learning with a reject option.

👩‍💻 Usage

To allow your probabilistic pipeline to fallback—i.e., abstain from predictions—you can wrap it with a skfb rejector. Training a rejector means both fitting your model and learning to accept or reject predictions. Evaluation of a rejector depends on fallback mode (inference with or without fallback labels) and measures the ability of the rejector to both accept correct predictions and reject ambiguous ones.

For example, skfb.estimators.ThresholdFallbackClassifierCV fits the base estimator and then finds the best confidence threshold via cross-validation. If fallback_mode == "store", then the rejector returns skfb.core.array.FBNDArray of predictions and a sparse fallback-mask property, which lets us summarize the accuracy of both predictions and rejections.

from skfb.estimators import ThresholdFallbackClassifierCV
from sklearn.linear_model import LogisticRegressionCV

rejector = ThresholdFallbackClassifierCV(
    LogisticRegressionCV(cv=4, random_state=0),
    thresholds=10,
    ambiguity_threshold=0.05,
    cv=5,
    fallback_label=-1,
    fallback_mode="store",
)
rejector.fit(X_train, y_train)  # Train base estimator and learn best threshold
rejector.score(X_test, y_test)  # Compute acceptance-correctness accuracy score

And for more motivation and information on usage, please visit our documentation and refer to the Medium series on machine learning with a reject option.

🏗 Installation

scikit-fallback requires:

  • Python (>=3.9,<3.13)
  • scikit-learn (>=1.0)
  • numpy
  • scipy
  • matplotlib (>=3.0) (optional)

and along with the requirements can be installed via pip :

pip install -U scikit-fallback

📚 Examples

See the examples/ directory for various applications of fallback estimators and scorers to scikit-learn-compatible pipelines.

🔗 References

  1. Hendrickx, K., Perini, L., Van der Plas, D. et al. Machine learning with a reject option: a survey. Mach Learn 113, 3073–3110 (2024). https://doi.org/10.1007/s10994-024-06534-x

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_fallback-0.1.1.post0.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

scikit_fallback-0.1.1.post0-py3-none-any.whl (37.1 kB view details)

Uploaded Python 3

File details

Details for the file scikit_fallback-0.1.1.post0.tar.gz.

File metadata

  • Download URL: scikit_fallback-0.1.1.post0.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for scikit_fallback-0.1.1.post0.tar.gz
Algorithm Hash digest
SHA256 f589a1e2d21c10ee91b793e517d71fe64e0d086112b6c0f9e0d5f01fd90732a5
MD5 46effbde3f7223d3c9431e774106a58e
BLAKE2b-256 505137c7174bade4fb1aafa0dcdd48b6db9e14aa874e213242b880e8405a1c91

See more details on using hashes here.

File details

Details for the file scikit_fallback-0.1.1.post0-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_fallback-0.1.1.post0-py3-none-any.whl
Algorithm Hash digest
SHA256 6dce670080e0f65d6f11559ed9289c21a96911a564dd96bdad06658cc833da61
MD5 58e49e5a2cbc493a92fa904e574cdba6
BLAKE2b-256 681f5cee04ce69ac623fa3b654c1c733f899cbbad0f63f0612d082f0a73934d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page