Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

A Python module for data fusion built on top of factorized models.

Project description

Travis

scikit-fusion is a Python module for data fusion based on recent collective latent factor models.

Dependencies

scikit-fusion is tested to work under Python 3.

The required dependencies to build the software are Numpy >= 1.7, SciPy >= 0.12, PyGraphviz >= 1.3 (needed only for drawing data fusion graphs) and Joblib >= 0.8.4.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

For development mode use:

python setup.py develop

Usage

Let’s generate three random data matrices describing three different object types:

>>> import numpy as np
>>> R12 = np.random.rand(50, 100)
>>> R13 = np.random.rand(50, 40)
>>> R23 = np.random.rand(100, 40)

Next, we define our data fusion graph:

>>> from skfusion import fusion
>>> t1 = fusion.ObjectType('Type 1', 10)
>>> t2 = fusion.ObjectType('Type 2', 20)
>>> t3 = fusion.ObjectType('Type 3', 30)
>>> relations = [fusion.Relation(R12, t1, t2),
                 fusion.Relation(R13, t1, t3),
                 fusion.Relation(R23, t2, t3)]
>>> fusion_graph = fusion.FusionGraph()
>>> fusion_graph.add_relations_from(relations)

and then collectively infer the latent data model:

>>> fuser = fusion.Dfmf()
>>> fuser.fuse(fusion_graph)
>>> print(fuser.factor(t1).shape)
(50, 10)

Afterwards new data might arrive:

>>> new_R12 = np.random.rand(10, 100)
>>> new_R13 = np.random.rand(10, 40)

for which we define the fusion graph:

>>> new_relations = [fusion.Relation(new_R12, t1, t2),
                     fusion.Relation(new_R13, t1, t3)]
>>> new_graph = fusion.FusionGraph(new_relations)

and transform new objects to the latent space induced by the fuser:

>>> transformer = fusion.DfmfTransform()
>>> transformer.transform(t1, new_graph, fuser)
>>> print(transformer.factor(t1).shape)
(10, 10)

scikit-fusion is distributed with a few working data fusion scenarios:

>>> from skfusion import datasets
>>> dicty = datasets.load_dicty()
>>> print(dicty)
FusionGraph(Object types: 3, Relations: 3)
>>> print(dicty.object_types)
{ObjectType(GO term), ObjectType(Experimental condition), ObjectType(Gene)}
>>> print(dicty.relations)
{Relation(ObjectType(Gene), ObjectType(GO term)),
 Relation(ObjectType(Gene), ObjectType(Gene)),
 Relation(ObjectType(Gene), ObjectType(Experimental condition))}

Project details


Release history Release notifications

This version
History Node

0.2.1

History Node

0.2

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scikit-fusion-0.2.1.tar.gz (6.8 MB) Copy SHA256 hash SHA256 Source None Aug 20, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page