Skip to main content

Geostatistical expansion in the scipy style

Project description

https://img.shields.io/pypi/v/scikit-gstat?color=green&logo=pypi&logoColor=yellow&style=flat-square:alt:PyPI https://img.shields.io/github/v/release/mmaelicke/scikit-gstat?color=green&logo=github&style=flat-square:alt:GitHubrelease(latestbydate) https://github.com/mmaelicke/scikit-gstat/workflows/Test%20and%20build%20docs/badge.svg Codecov https://zenodo.org/badge/98853365.svg

How to cite

In case you use SciKit-GStat in other software or scientific publications, please reference this module. There is a GMD publication. Please cite it like:

Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python, Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, 2022.

The code itself is published and has a DOI. It can be cited as:

Mirko Mälicke, Romain Hugonnet, Helge David Schneider, Sebastian Müller, Egil Möller, & Johan Van de Wauw. (2022). mmaelicke/scikit-gstat: Version 1.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.5970098

Full Documentation

The full documentation can be found at: https://mmaelicke.github.io/scikit-gstat

Description

SciKit-Gstat is a scipy-styled analysis module for geostatistics. It includes two base classes Variogram and OrdinaryKriging. Additionally, various variogram classes inheriting from Variogram are available for solving directional or space-time related tasks. The module makes use of a rich selection of semi-variance estimators and variogram model functions, while being extensible at the same time. The estimators include:

  • matheron

  • cressie

  • dowd

  • genton

  • entropy

  • two experimental ones: quantiles, minmax

The models include:

  • sperical

  • exponential

  • gaussian

  • cubic

  • stable

  • matérn

with all of them in a nugget and no-nugget variation. All the estimator are implemented using numba’s jit decorator. The usage of numba might be subject to change in future versions.

Installation

PyPI

pip install scikit-gstat

Note: It can happen that the installation of numba or numpy is failing using pip. Especially on Windows systems. Usually, a missing Dll (see eg. #31) or visual c++ redistributable is the reason.

GIT:

git clone https://github.com/mmaelicke/scikit-gstat.git
cd scikit-gstat
pip install -r requirements.txt
pip install -e .

Conda-Forge:

From Version 0.5.5 on scikit-gstat is also available on conda-forge. Note that for versions < 1.0 conda-forge will not always be up to date, but from 1.0 on, each minor release will be available.

conda install -c conda-forge scikit-gstat

Quickstart

The Variogram class needs at least a list of coordiantes and values. All other attributes are set by default. You can easily set up an example by using the skgstat.data sub-module, that includes a growing list of sample data.

import skgstat as skg

# the data functions return a dict of 'sample' and 'description'
coordinates, values = skg.data.pancake(N=300).get('sample')

V = skg.Variogram(coordinates=coordinates, values=values)
print(V)
spherical Variogram
-------------------
Estimator:         matheron
Effective Range:   353.64
Sill:              1512.24
Nugget:            0.00

All variogram parameters can be changed in place and the class will automatically invalidate and update dependent results and parameters.

V.model = 'exponential'
V.n_lags = 15
V.maxlag = 500

# plot - matplotlib and plotly are available backends
fig = V.plot()
./example.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_gstat-1.0.19.tar.gz (693.0 kB view details)

Uploaded Source

Built Distribution

scikit_gstat-1.0.19-py3-none-any.whl (708.5 kB view details)

Uploaded Python 3

File details

Details for the file scikit_gstat-1.0.19.tar.gz.

File metadata

  • Download URL: scikit_gstat-1.0.19.tar.gz
  • Upload date:
  • Size: 693.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for scikit_gstat-1.0.19.tar.gz
Algorithm Hash digest
SHA256 38b4954cf8fe3eb1ab551d9f61562b3e2ae252e959c067a0472f39f839354036
MD5 35f906e602ce8024e0de098f0b88b7a6
BLAKE2b-256 959e72fb2165dcc86f6ab20db7595e9ba4ce4454530ef3fb610d848925f597ea

See more details on using hashes here.

File details

Details for the file scikit_gstat-1.0.19-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_gstat-1.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 0e94b6767c21e4a1b3caf3c5a2838214b2740fe43b1e82635ffaaad8dc7f2a81
MD5 5cb6e8699c41d18218a824a6c5eb3b24
BLAKE2b-256 034eab7d7b8daf3d1d71e7a4d71c7561ceb3b3ccdba5ae57a612c7eb77c4bf79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page